Background: Gait disturbances may appear prior to cognitive dysfunction in the early stage of silent cerebrovascular disease (SCD). Subtle changes in gait characteristics may provide an early warning of later cognitive decline. Our team has proposed a vision-based artificial intelligent gait analyzer for the rapid detection of spatiotemporal parameters and walking pattern based on videos of the Timed Up and Go (TUG) test. The primary objective of this study is to investigate the relationship between gait features assessed by our artificial intelligent gait analyzer and cognitive function changes in patients with SCD.

Methods: This will be a multicenter prospective cohort study involving a total of 14 hospitals from Shanghai and Guizhou. One thousand and six hundred patients with SCD aged 60-85 years will be consecutively recruited. Eligible patients will undergo the intelligent gait assessment and neuropsychological evaluation at baseline and at 1-year follow-up. The intelligent gait analyzer will divide participant into normal gait group and abnormal gait group according to their walking performance in the TUG videos at baseline. All participants will be naturally observed during 1-year follow-up period. Primary outcome are the changes in Mini-Mental State Examination (MMSE) score. Secondary outcomes include the changes in intelligent gait spatiotemporal parameters (step length, gait speed, step frequency, step width, standing up time, and turning back time), the changes in scores on other neuropsychological tests (Montreal Cognitive Assessment, the Stroop Color Word Test, and Digit Span Test), falls events, and cerebrovascular events. We hypothesize that both groups will show a decline in MMSE score, but the decrease of MMSE score in the abnormal gait group will be more significant.

Conclusion: This study will be the first to explore the relationship between gait features assessed by an artificial intelligent gait analyzer and cognitive decline in patients with SCD. It will demonstrate whether subtle gait abnormalities detected by the artificial intelligent gait analyzer can act as a cognitive-related marker for patients with SCD.

Trial Registration: This trial was registered at ClinicalTrials.gov ( NCT04456348 ; 2 July 2020).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9245255PMC
http://dx.doi.org/10.1186/s12883-022-02767-2DOI Listing

Publication Analysis

Top Keywords

intelligent gait
28
artificial intelligent
20
gait analyzer
20
gait
16
gait features
12
features assessed
12
assessed artificial
12
gait group
12
mmse score
12
will
9

Similar Publications

The KinaTrax markerless motion capture system, used extensively in the analysis of baseball pitching and hitting, is currently being adapted for use in clinical biomechanics. In clinical and laboratory environments, repeatability is inherent to the quality of any diagnostic tool. The KinaTrax system was assessed on within- and between-session reliability for gait kinematic and spatiotemporal parameters in healthy adults.

View Article and Find Full Text PDF

The inherent challenges of robotic underwater exploration, such as hydrodynamic effects, the complexity of dynamic coupling, and the necessity for sensitive interaction with marine life, call for the adoption of soft robotic approaches in marine exploration. To address this, we present a novel prototype, ZodiAq, a soft underwater drone inspired by prokaryotic bacterial flagella. ZodiAq's unique dodecahedral structure, equipped with 12 flagella-like arms, ensures design redundancy and compliance, ideal for navigating complex underwater terrains.

View Article and Find Full Text PDF

Achieving a comprehensive understanding of animal intelligence demands an integrative approach that acknowledges the interplay between an organism's brain, body and environment. Insects, despite their limited computational resources, demonstrate remarkable abilities in navigation. Existing computational models often fall short in faithfully replicating the morphology of real insects and their interactions with the environment, hindering validation and practical application in robotics.

View Article and Find Full Text PDF

Ankle push-off is important for efficient, human-like walking, and many prosthetic devices mimic push-off using motors or elastic elements. The knee is extended throughout the stance phase and begins to buckle just before push-off, with timing being crucial. However, the exact mechanisms behind this buckling are still unclear.

View Article and Find Full Text PDF

Mangrove-based carbon market projects: What stakeholders need to address during pre-feasibility assessment.

J Environ Manage

January 2025

Ecoresolve, San Francisco, CA, USA; Earth Observation Centre, Institute of Climate Change (IPI), Universiti Kebangsaan Malaysia, Bangi, 43600, Malaysia; Department of Civil Engineering, College of Engineering, American University of Sharjah (AUS), P.O. Box 26666, Sharjah, United Arab Emirates; Department of Geography, University of California-Berkeley, Berkeley, CA, 94709, USA. Electronic address:

Mangrove-based carbon market projects (MbCMP) aim to conserve, protect and restore mangrove habitats in order to generate high quality blue carbon credits via a crediting program, as a contribution to climate change mitigation/adaptation, biodiversity conservation, ecosystem services provision and local socio-economic development. The blue carbon credits generated are transferable, verifiable and sold through carbon markets to earn additional income for governments and local communities. The main aim of the paper is to provide important considerations for pre-field planning, that is, how challenges associated with fieldwork, project implementation, and monitoring reporting and verification (MRV) can be addressed with proper pre-field planning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!