Objectives: The Burkholderia cepacia complex (Bcc), which was originally thought to be a single species, represents a group of 24 distinct species that are often resistant to multiple antibiotics, and usually known to cause life-threatening pulmonary infections in cystic fibrosis patients. Herein we describe a series of non-respiratory Bcc infections, the risk factors and epidemiologic factors, in addition to the clinical course.
Patients And Methods: This is a retrospective chart review of 44 patients with documented B. cepacia infections isolated from sites other than the respiratory tract admitted between June 2005 and February 2020 to the American University of Beirut Medical Center (AUBMC), a tertiary referral hospital for Lebanon and the Middle East region. The epidemiological background of these patients, their underlying risk factors, the used antibiotic regimens, and the sensitivities of the B. cepacia specimens were collected.
Results: The majority of the Bcc infections (26/44, 59.1%) were hospital-acquired infections. The most common nationality of the patients was Iraqi (18/44, 40.9%), and the most common site of infection was bacteremia (17/44, 38.6%), followed by skin and soft tissues infections (16/44, 36.4%) and vertebral osteomyelitis (8/44, 18.2%). Most of the isolated B. cepacia were susceptible to ceftazidime, carbapenems, followed by TMP-SMX. Patients responded well to therapy with good overall outcome.
Conclusions: Bcc can cause infections outside the respiratory tract, mostly as hospital-acquired infections and in immunocompromised patients. Most patients were referred from countries inflicted by wars raising the possibility of a potential role of conflicts which need to be investigated in future studies. Directed therapy according to susceptibility results proved effective in most patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9470806 | PMC |
http://dx.doi.org/10.1007/s44197-022-00048-2 | DOI Listing |
Front Cell Infect Microbiol
January 2025
Department of Respiratory Medicine, Children' s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China.
Background: The pathogenic distribution of co-infections and immunological status of patients infected with human adenovirus serotypes 3 or 7 (HAdV-3 or HAdV-7) were poorly understood.
Methods: This study involved a retrospective analysis of respiratory specimens collected from enrolled children with lower respiratory tract infections (LRTIs), positive for HAdV-3 or HAdV-7 from January 2017 to December 2019. Demographic data, clinical features, laboratory and radiographic findings were compared to delineate the impact of co-infections, and immune responses on clinical severity of HAdV-3 or HAdV-7 infections.
SAGE Open Med
January 2025
College of Medicine King Khalid University, Abha, Saudi Arabia.
Background: The coronavirus disease 2019 (COVID-19) pandemic has affected millions of people worldwide, and although it is primarily a respiratory illness, gastrointestinal symptoms have been reported in a significant proportion of patients.
Aim: Prevalence of gastrointestinal symptoms after recovery from COVID-19.
Methodology: A community-based cross-sectional study was conducted in the Aseer region of Saudi Arabia.
Front Immunol
January 2025
Faculty of Life and Biotechnology, Kunming University of Science and Technology, Kunming, China.
Background: Dysbiosis of the lung microbiome can contribute to the initiation and progression of lung cancer. Synchronous multiple primary lung cancer (sMPLC) is an increasingly recognized subtype of lung cancer characterized by high morbidity, difficulties in early detection, poor prognosis, and substantial clinical challenges. However, the relationship between sMPLC pathogenesis and changes in the lung microbiome remains unclear.
View Article and Find Full Text PDFERJ Open Res
January 2025
Copenhagen Academy for Medical Education and Simulation, Rigshospitalet, The Capital Region of Denmark, Copenhagen, Denmark.
Rationale: Flexible bronchoscopy is an operator-dependent procedure. An automatic bronchial identification system based on artificial intelligence (AI) could help bronchoscopists to perform more complete and structured procedures through automatic guidance.
Methods: 101 participants were included from six different continents at the European Respiratory Society annual conference in Milan, 9-13 September 2023.
PeerJ
January 2025
Department of Animal Science, University of Tennessee-Knoxville, Knoxville, TN-Tennessee, United States.
Bovine respiratory disease (BRD) is one of the most common economic and health challenges to the beef cattle industry. Prophylactic use of antimicrobial drugs can alter the microbial communities in the respiratory tract. Considering that the bovine upper respiratory tract microbiome has been associated with generalized health, understanding the microenvironment that influences this microbiome may provide insights into the pathogenesis of BRD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!