Aging of the cardiovascular regulatory function manifests as an imbalance between the sympathetic and parasympathetic (vagal) components of the autonomic nervous system (ANS). The most characteristic change is sympathetic overdrive, which is manifested by an increase in the muscle sympathetic nerve activity (MSNA) burst frequency with age. Age-related changes that occur in vagal nerve activity is less clear. The resting tonic parasympathetic activity can be estimated noninvasively by measuring the increase in heart rate occurring in response to muscarinic cholinergic receptor blockade; animal study models have shown this to diminish with age. Humoral, cellular, and neural mechanisms work together to prevent non-resolving inflammation. This review focuses on the mechanisms underlying age-related alternations in the ANS and how an imbalance in the ANS, evaluated by MSNA and heart rate variability (HRV), potentially facilitates inflammation when the homeostatic mechanisms between reflex neural circuits and the immune system are compromised, particularly the dysfunction of the cholinergic anti-inflammatory reflex. Physiologically, the efferent arm of this reflex acts via the [Formula: see text] 7 nicotinic acetylcholine receptors expressed in macrophages, monocytes, dendritic cells, T cells, and endothelial cells to curb the release of inflammatory cytokines, in which inhibition of NF‑κB nuclear translocation and activation of a JAK/STAT-mediated signaling cascade in macrophages and other immune cells are implicated. This reflex is likely to become less adequate with advanced age. Consequently, a pro-inflammatory state induced by reduced vagus output with age is associated with endothelial dysfunction and may significantly contribute to the development and propagation of atherosclerosis, heart failure, and hypertension. The aim of this review is to summarize the relationship between ANS dysfunction, inflammation, and endothelial dysfunction in the context of aging. Meanwhile, this review also attempts to describe the role of HRV measures as a predictor of the level of inflammation and endothelial dysfunction in the aged population and explore the possible therapeutical effects of vagus nerve stimulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768093 | PMC |
http://dx.doi.org/10.1007/s11357-022-00616-1 | DOI Listing |
Aging Cell
January 2025
Wuxi School of Medicine, Jiangnan University, Wuxi, China.
Endothelial dysfunction, characterized by a decline in endothelial physiological functions, is a significant aspect of cardiovascular aging, contributing notably to arterial stiffness, atherosclerosis, and hypertension. Transient receptor potential channel V4 (TRPV4), a key member of Ca-permeable channels, plays a crucial role in maintaining vascular functions. However, the role and mechanisms of TRPV4 in aging-related endothelial dysfunction remain incompletely understood.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Shandong, China.
Endothelial-to-mesenchymal transition (EndMT) is a cellular reprogramming mechanism by which endothelial cells acquire a mesenchymal phenotype. Endothelial cell dysfunction is the initiating factor of atherosclerosis (AS). Increasing evidence suggests that EndMT contributes to the occurrence and progression of atherosclerotic lesions and plaque instability.
View Article and Find Full Text PDFFront Cell Neurosci
December 2024
Laboratory of Molecular Neurovirology, Faculty of Health Science, University of Brasília, Brasília, Brazil.
The persistence or emergence of long-term symptoms following resolution of primary SARS-CoV-2 infection is referred to as long COVID or post-acute sequelae of COVID-19 (PASC). PASC predominantly affects the cardiovascular, neurological, respiratory, gastrointestinal, reproductive, and immune systems. Among these, the central nervous system (CNS) is significantly impacted, leading to a spectrum of symptoms, including fatigue, headaches, brain fog, cognitive impairment, anosmia, hypogeusia, neuropsychiatric symptoms, and peripheral neuropathy (neuro-PASC).
View Article and Find Full Text PDFFront Aging Neurosci
December 2024
Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Eye Care Centre, The University of British Columbia, Vancouver, BC, Canada.
Introduction: Apolipoprotein E (ApoE) plays a crucial role in lipid homeostasis, predominantly expressed in astrocytes and to a lesser extent in microglia within the central nervous system (CNS). While the allele is the strongest genetic risk factor for late-onset Alzheimer's disease (AD), its precise role in AD pathogenesis remains elusive. -knockout (-ko) mice, mice expressing human , and human carriers exhibit similar deficits in lipid metabolism, cognitive and behavioral functions, and neurodegeneration.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120.
The close interaction of mitochondrial fission and mitophagy, two crucial mechanisms, is key in the progression of myocardial ischemia-reperfusion (IR) injury. However, the upstream regulatory mechanisms governing these processes remain poorly understood. Here, we demonstrate a marked elevation in Nr4a1 expression following myocardial IR injury, which is associated with impaired cardiac function, heightened cardiomyocyte apoptosis, exacerbated inflammatory responses, and endothelial dysfunction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!