Alterations of Microstructure and Sodium Homeostasis in Fast Amyotrophic Lateral Sclerosis Progressors: A Brain DTI and Sodium MRI Study.

AJNR Am J Neuroradiol

From the Aix Marseille University (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), Centre national de la recherche scientifique, The Center for Magnetic Resonance in Biology and Medicine, Marseille, France.

Published: July 2022

Background And Purpose: While conventional MR imaging has limited value in amyotrophic lateral sclerosis, nonconventional MR imaging has shown alterations of microstructure using diffusion MR imaging and recently sodium homeostasis with sodium MR imaging. We aimed to investigate the topography of brain regions showing combined microstructural and sodium homeostasis alterations in amyotrophic lateral sclerosis subgroups according to their disease-progression rates.

Materials And Methods: Twenty-nine patients with amyotrophic lateral sclerosis and 24 age-matched healthy controls were recruited. Clinical assessments included disease duration and the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale. Patients were clinically differentiated into fast ( = 13) and slow ( = 16) progressors according to the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale progression rate. 3T MR imaging brain protocol included H T1-weighted and diffusion sequences and a Na density-adapted radial sequence. Quantitative maps of diffusion with fractional anisotropy, mean diffusivity, and total sodium concentration were measured. The topography of diffusion and sodium abnormalities was assessed by voxelwise analyses.

Results: Patients with amyotrophic lateral sclerosis showed significantly higher sodium concentrations and lower fractional anisotropy, along with higher sodium concentrations and higher mean diffusivity compared with healthy controls, primarily within the corticospinal tracts, corona radiata, and body and genu of the corpus callosum. Fast progressors showed wider-spread abnormalities mainly in the frontal areas. In slow progressors, only fractional anisotropy measures showed abnormalities compared with healthy controls, localized in focal regions of the corticospinal tracts, the body of corpus callosum, corona radiata, and thalamic radiation.

Conclusions: The present study evidenced widespread combined microstructural and sodium homeostasis brain alterations in fast amyotrophic lateral sclerosis progressors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9262065PMC
http://dx.doi.org/10.3174/ajnr.A7559DOI Listing

Publication Analysis

Top Keywords

amyotrophic lateral
32
lateral sclerosis
32
sodium homeostasis
16
healthy controls
12
fractional anisotropy
12
sodium
10
alterations microstructure
8
amyotrophic
8
fast amyotrophic
8
lateral
8

Similar Publications

Objective: Previous studies have hinted at an association between water exposure and the development of ALS. However, proximity measures to these water sources have been limited to questionnaires or large buffers due to a lack of fine geospatial measures. They also do not distinguish the various classes of hydrographic features.

View Article and Find Full Text PDF

Maximizing the translational potential of neurophysiology in amyotrophic lateral sclerosis: a study on compound muscle action potentials.

Amyotroph Lateral Scler Frontotemporal Degener

January 2025

Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, UK and.

Mouse models of amyotrophic lateral sclerosis (ALS) enable testing of novel therapeutic interventions. However, treatments that have extended survival in mice have often failed to translate into human benefit in clinical trials. Compound muscle action potentials (CMAPs) are a simple neurophysiological test that measures the summation of muscle fiber depolarization in response to maximal stimulation of the innervating nerve.

View Article and Find Full Text PDF

Neurodegenerative diseases represent a group of disorders characterized by progressive degeneration of neurons in the central nervous system, leading to a range of cognitive, motor, and sensory impairments. In recent years, there has been growing interest in the association between neurodegenerative diseases and olfactory dysfunction (OD). Characterized by a decline in the ability to detect or identify odors, OD has been observed in various conditions, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic Lateral Sclerosis (ALS).

View Article and Find Full Text PDF

Introduction: Amyotrophic lateral sclerosis (ALS) is a rare, devastating neurodegenerative disease that affects upper and lower motor neurons, resulting in muscle atrophy, spasticity, hyperreflexia, and paralysis. Inflammation plays an important role in the development of ALS, and associated with rapid disease progression. Current observational studies indicate the thinning of cortical thickness in patients with ALS is associated with rapid disease progression and cognitive changes.

View Article and Find Full Text PDF

Background: Previous studies have suggested that neuromuscular junction (NMJ) denervation plays a critical role in amyotrophic lateral sclerosis (ALS). Repetitive nerve stimulation (RNS) has been used as a technique to test neuromuscular transmission, but the sensitivity and stability of its parameters have not been investigated in patients with ALS. In addition, the impact of impaired homeostasis on NMJ stability in patients with ALS remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!