Tuberculosis (TB) is one of the most significant world health problems, responsible for 1.5 M deaths in 2020, and yet, current treatments rely largely on 40 year old paradigms. Although the rifamycins (RIFs), best exemplified by the drug rifampin (RMP), represent a well-studied and therapeutically effective chemotype that targets the bacterial RNA polymerase (RNAP), these agents still suffer from serious drawbacks including the following: 3-9 month treatment times; cytochrome P450 (Cyp450) induction [particularly problematic for human immunodeficiency virus- (MTB) co-infection]; and the existence of RIF-resistant (RIF) MTB strains. We have utilized a structure-based drug design approach to synthesize and test 15 benzoxazinorifamycins (bxRIFs), congeners of the clinical candidate rifalazil, to minimize human pregnane X receptor (hPXR) activation while improving potency against MTB. We have determined the compounds' activation of the hPXR [responsible for inducing Cyp450 3A4 (CYP3A4)]. Compound ICs have been determined against the wild-type and the most prevalent RIF (β-S450L) mutant MTB RNAPs. We have also determined their bactericidal activity against "normal" replicating MTB and a model for non-replicating, persister MTB. We have identified a minimal substitution and have probed larger substitutions that exhibit negligible hPXR activation (1.2-fold over the dimethyl sulfoxide control), many of which are 5- to 10-fold more potent against RNAPs and MTB than RMP. Importantly, we have analogues that are essentially equipotent against replicating MTB and non-replicating persister MTB, a property that is correlated with faster kill rates and may lead to shorter treatment durations. This work provides a proof of principle that the ansamycin core remains an attractive and effective scaffold for novel and dramatically improved RIFs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsinfecdis.1c00635DOI Listing

Publication Analysis

Top Keywords

hpxr activation
12
mtb
9
replicating mtb
8
non-replicating persister
8
persister mtb
8
optimization benzoxazinorifamycins
4
benzoxazinorifamycins minimize
4
hpxr
4
minimize hpxr
4
activation
4

Similar Publications

Pregnane X receptor (PXR) is a xenobiotic-sensing nuclear receptor with a well-established role in regulating drug metabolism and clearance. Recent studies have shown that PXR is involved in cell proliferation, apoptosis, immune response, and energy homeostasis. It is important to identify compounds that may modulate PXR activity to prevent drug-drug interactions, distinguish chemicals which could potentially generate toxicity, and identify compounds for further development towards therapeutic usage.

View Article and Find Full Text PDF

We report here the orchestration of molecular ion networking (MoIN) and a set of computationally assisted structural elucidation approaches in the discovery and assignment of a new class of rearranged 4,5--abietane diterpenoids including serra A (), which possesses an unusual 6/6/5/5 fused-ring skeleton system, together with two previously unreported diterpenoids serras B-C (-) and five known compounds were isolated from (). The structures were elucidated by spectroscopic analysis in conjunction with computationally assisted structure elucidation tools. , serras A-C (-) bind well to PXR, suggesting their potential role in reducing inflammation.

View Article and Find Full Text PDF

Pregnane X receptor inhibits the transdifferentiation of hepatic stellate cells by down-regulating periostin expression.

Biochem J

September 2024

Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 Japan.

Pregnane X receptor (PXR) is a xenobiotic-sensing nuclear receptor that plays a key role in drug metabolism. Recently, PXR was found to attenuate the development of liver cancer by suppressing epithelial-mesenchymal transition (EMT) in liver cancer cells in a mouse model of two-stage chemical carcinogenesis. To elucidate the role of PXR in the EMT of liver cancer cells, we focused on its role in hepatic stellate cells (HSCs), which are components of the tumor microenvironment in hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how the Pregnane X receptor (PXR) in polar bears and humans interacts with certain environmental pollutants, highlighting differences in selectivity and specificity.
  • Researchers used methodologies like homology modeling and molecular dynamics simulations to analyze the interactions of three organic pollutants (BPA, chlordane, and toxaphene) with polar bear PXR (pbPXR) and human PXR (hPXR).
  • The findings showed that while both PXRs interact with the pollutants similarly, the pollutants affect the dynamics of each receptor differently, particularly impacting key amino acid residues crucial for the binding energy and overall receptor activation.
View Article and Find Full Text PDF

Renal fibrosis is a common pathological feature of chronic kidney disease (CKD) with various etiologies, which seriously affects the structure and function of the kidney. Pregnane X receptor (PXR) is a member of the nuclear receptor superfamily and plays a critical role in regulating the genes related to xenobiotic and endobiotic metabolism in mammals. Previous studies show that PXR is expressed in the kidney and has protective effect against acute kidney injury (AKI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!