Cholesterol crystals and atherosclerotic plaque instability: Therapeutic potential of Eicosapentaenoic acid.

Pharmacol Ther

Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Published: December 2022

Atherosclerotic plaques associated with acute coronary syndromes (ACS), i.e. culprit lesions, frequently feature a ruptured fibrous cap with thrombotic complications. On imaging, these plaques exhibit a low attenuation, lipid-rich, necrotic core containing cholesterol crystals and are inherently unstable. Indeed, cholesterol crystals are causally associated with plaque vulnerability in vivo; their formation results from spontaneous self-assembly of cholesterol molecules. Cholesterol homeostasis is a central determinant of the physicochemical conditions leading to crystal formation, which are favored by elevated membrane free cholesterol content in plaque endothelial cells, smooth muscle cells, monocyte-derived macrophages, and foam cells, and equally by lipid oxidation. Emerging evidence from imaging trials in patients with coronary heart disease has highlighted the impact of intervention involving the omega-3 fatty acid, eicosapentaenoic acid (EPA), on vulnerable, low attenuation atherosclerotic plaques. Thus, EPA decreased features associated with unstable plaque by increasing fibrous cap thickness in statin-treated patients, by reducing lipid volume and equally attenuating intraplaque inflammation. Importantly, atherosclerotic plaques rapidly incorporate EPA; indeed, a high content of EPA in plaque tissue is associated with decreased plaque inflammation and increased stability. These findings are entirely consistent with the major reduction seen in cardiovascular events in the REDUCE-IT trial, in which high dose EPA was administered as its esterified precursor, icosapent ethyl (IPE); moreover, clinical benefit was proportional to circulating EPA levels. Eicosapentaenoic acid is efficiently incorporated into phospholipids, where it modulates cholesterol-enriched domains in cell membranes through physicochemical lipid interactions and changes in rates of lipid oxidation. Indeed, biophysical analyses indicate that EPA exists in an extended conformation in membranes, thereby enhancing normal cholesterol distribution while reducing propagation of free radicals. Such effects mitigate cholesterol aggregation and crystal formation. In addition to its favorable effect on cholesterol domain structure, EPA/IPE exerts pleiotropic actions, including antithrombotic, antiplatelet, anti-inflammatory, and proresolving effects, whose plaque-stabilizing potential cannot be excluded. Docosahexaenoic acid is distinguished from EPA by a higher degree of unsaturation and longer carbon chain length; DHA is thus predisposed to changes in its conformation with ensuing increase in membrane lipid fluidity and promotion of cholesterol aggregation into discrete domains. Such distinct molecular effects between EPA and DHA are pronounced under conditions of high cellular cholesterol content and oxidative stress. This review will focus on the formation and role of cholesterol monohydrate crystals in destabilizing atherosclerotic plaques, and on the potential of EPA as a therapeutic agent to attenuate the formation of deleterious cholesterol membrane domains and of cholesterol crystals. Such a therapeutic approach may translate to enhanced plaque stability and ultimately to reduction in cardiovascular risk.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pharmthera.2022.108237DOI Listing

Publication Analysis

Top Keywords

cholesterol crystals
16
atherosclerotic plaques
16
cholesterol
14
eicosapentaenoic acid
12
epa
10
fibrous cap
8
low attenuation
8
crystal formation
8
cholesterol content
8
lipid oxidation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!