Peracetic acid promotes biohydrogen production from anaerobic dark fermentation of waste activated sludge.

Sci Total Environ

College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China. Electronic address:

Published: October 2022

Peracetic acid (PAA), a widely used organic peroxide with strong disinfection and oxidizing effect, has recently attracted research interest in waste activated sludge (WAS) treatment to achieve sludge reduction and resource utilization. However, its impact on hydrogen accumulation from WAS dark fermentation has not been documented. This study therefore is intended to fill in this knowledge gap and clarify the underlying mechanism of PAA-promoted hydrogen generation. Batch experiments revealed that when raised PAA dosage from 0 to 8 mg/g TSS (total suspended solids), cumulative hydrogen production within 168 h fermentation increased from 1.3 to 14.2 mL/g VSS (volatile suspended solids), however, further increase PAA dosage to 10 mg/g TSS resulted in a slight decrease in hydrogen yield. Mechanism studies revealed that PAA was beneficial to sludge disintegration (10 mg/g TSS PAA increased SCOD (soluble chemical oxygen demand) by 254 %). Although PAA inhibited the activity of all microorganism involved in dark fermentation, the inhibitory effect on hydrogen consumers were much more serious than that on hydrogen producers (-45.8 % versus -5.1 % and - 7.3 %). The fermentation was found to shift from propionate type to acetate and butyrate type, favoring hydrogen production. Moreover, the methane production process was effectively inhibited by PAA, which meant less hydrogen consumption. Microbial community analysis results unveiled that PAA increased the abundances of hydrolytic bacteria (e.g., norank_f__Saprospiraceae) and hydrogen producers (e.g., Clostridium_sensu_stricto_10). These findings obtained in this work provide new insights into oxidants-involved sludge treatment process and might have important implication for WAS treatment and bioenergy production in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.156991DOI Listing

Publication Analysis

Top Keywords

dark fermentation
12
mg/g tss
12
hydrogen
9
peracetic acid
8
waste activated
8
activated sludge
8
paa
8
sludge treatment
8
paa dosage
8
dosage mg/g
8

Similar Publications

Bioenergy Production from Sorghum Distillers Grains via Dark Fermentation.

BioTech (Basel)

December 2024

Department of Environmental Science and Engineering, Feng Chia University, Taichung City 40724, Taiwan.

Sorghum distillers grains (SDGs) produced from a sorghum liquor company were used for generating biohydrogen via dark fermentation at pH 4.5-6.5 and 55 °C with a batch test, and the biohydrogen electricity generation potential was evaluated.

View Article and Find Full Text PDF

The disposal of municipal solid waste (MSW) in urban areas is a big issue nowadays in most of the countries. Developing countries like India are struggling with the continuous indiscriminate disposal of MSW due to rapid increase in the urbanization, industrialization, and human population growth. The mismanagement of MSW causes adverse environmental impacts, public health risks, and other socio-economic problems.

View Article and Find Full Text PDF

Background: Biohydrogen production from agro-industrial wastes through dark fermentation offers several advantages including eco-friendliness, sustainability, and the simplicity of the process. This study aimed to produce biohydrogen from fruit and vegetable peel wastes (FVPWs) by anaerobic fermentative bacteria isolated from domestic wastewater. Kinetic analysis of the produced biohydrogen by five isolates on a glucose medium was analyzed using a modified Gompertz model (MGM).

View Article and Find Full Text PDF

Insight into how fermentation might contribute to the distinctiveness of Australian coffee.

Food Chem

December 2024

School of Agriculture, Food and Wine, and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia. Electronic address:

Article Synopsis
  • The study focused on three coffee estates in New South Wales, aiming to enhance the flavor profiles of Australian coffee through different processing methods (wet fermented and non-fermented).
  • Researchers analyzed 33 volatile compounds in both green and roasted coffee beans, identifying various esters, alcohols, acids, and more, while also assessing sensory characteristics like appearance and flavor.
  • Findings indicated that wet fermentation improved certain desirable aromas and flavors in coffee, particularly enhancing notes associated with premium coffees, such as "black tea leaves" and "dark chocolate."
View Article and Find Full Text PDF

Investigations of the metabolic capabilities of anaerobic protists advances our understanding of the evolution of eukaryotic life on Earth and for uncovering analogous extraterrestrial complex microbial life. Certain species of foraminiferan protists live in environments analogous to early Earth conditions when eukaryotes evolved, including sulfidic, anoxic, and hypoxic sediment porewaters. Foraminifera are known to form symbioses as well as to harbor organelles from other eukaryotes (chloroplasts), possibly bolstering the host's independence from oxygen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!