Background: PADI4, an enzyme catalyzing arginine residues to citrulline residues, is highly expressed in malignant tumors. This study prepared a monoclonal anti-human PADI4 antibody and investigated the therapeutic effect of the antibody on breast tumors and the functional mechanism.
Methods: After treatment with PADI4 antibody, the changes in tumor-bearing mice were examined by PET-CT, pathological assays, biochemical tests, routine blood tests, cytokine assays and metabolic assays. We used PADI4 recombinant protein to catalyze fibronectin (Fn) and then used citrullinated fibronectin (Cit-Fn) to culture MDA-MB-231 cells. We also treated Cit-Fn cultured cells with PADI4 antibody. The cultured cells were examined using cell proliferation, apoptosis, colony formation, migration and glycolic ATP production. Citrullination in the tumor tissues and peripheral blood was measured using Western blotting and ELISA, respectively.
Results: Following PADI4 antibody treatment, tumor growth was significantly suppressed, and the number of apoptotic cells in tumor tissues was increased. The citrullination level in peripheral blood and tumor tissues was decreased, EMT-related gene expression in tumors was also decreased, and the spontaneous movement of tumor-bearing mice was increased following treatment. Following antibody treatment, the serum concentrations of IL-10, IL-12p70, IL-23, ALT and AST were significantly decreased. MDA-MB-231 cells treated with Cit-Fn showed increased cell proliferation, cell migration, colony formation and glycolytic ATP production and decreased apoptosis. The growth and migration of MDA-MB-231 cells were reduced following PADI4 antibody treatment, and PADI4 antibody inhibited the citrullination of fibronectin in vitro.
Conclusions: The PADI4 antibody had a therapeutic effect on breast tumors by inhibiting the citrullination of fibronectin to change the tumor tissue microenvironment. PADI4 antibody is a potential means for tumor treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2022.113289 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!