A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interpretable machine learning identification of arginine methylation sites. | LitMetric

Interpretable machine learning identification of arginine methylation sites.

Comput Biol Med

Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, South Korea; Advanced Electronics and Information Research Center, Jeonbuk National University, Jeonju 54896, South Korea. Electronic address:

Published: August 2022

Protein methylation is one of the most prominent posttranslation modifications that essentially regulates several biological processes in eukaryotes. Therefore, identification of the arginine methylation site is crucial in deciphering its characteristics and functions in cell biology, disease mechanisms, and guided drug development. The computation methods address the long-term bottleneck together with the cost, time, and labor required in experimental methods for large-scale identification of protein arginine methylation sites. In this study, we proposed a robust machine learning-based computational tool known as iIRMethyl, employing the primary sequence and physicochemical properties of protein along with a two-step feature selection method for optimal selection of feature descriptors. Moreover, the performance of iIRMethyl was comprehensively evaluated via k-fold cross-validation on a benchmark dataset and independent test dataset. iIRMethyl demonstrated a remarkably greater performance than the state-of-the-art method and achieved an average area under the curve value of 0.99 for both k-fold cross-validation and an independent test set in the identification of protein arginine methylation sites. Furthermore, the outcomes reveal that iIRMethyl is a robust and accurate computational tool for large-scale identification of arginine methylation sites and would facilitate the understanding of their functional mechanisms and accelerating their application in drug development and clinical therapy. Additionally, the prediction mechanism of the proposed model iIRMethyl is interpreted using the SHapley Additive exPlanation algorithm.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2022.105767DOI Listing

Publication Analysis

Top Keywords

arginine methylation
20
methylation sites
16
identification arginine
12
drug development
8
large-scale identification
8
identification protein
8
protein arginine
8
computational tool
8
k-fold cross-validation
8
independent test
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!