Social evolution of shared biofilm matrix components.

Proc Natl Acad Sci U S A

Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511.

Published: July 2022

Biofilm formation is an important and ubiquitous mode of growth among bacteria. Central to the evolutionary advantage of biofilm formation is cell-cell and cell-surface adhesion achieved by a variety of factors, some of which are diffusible compounds that may operate as classical public goods-factors that are costly to produce but may benefit other cells. An outstanding question is how diffusible matrix production, in general, can be stable over evolutionary timescales. In this work, using as a model, we show that shared diffusible biofilm matrix proteins are indeed susceptible to cheater exploitation and that the evolutionary stability of producing these matrix components fundamentally depends on biofilm spatial structure, intrinsic sharing mechanisms of these components, and flow conditions in the environment. We further show that exploitation of diffusible adhesion proteins is localized within a well-defined spatial range around cell clusters that produce them. Based on this exploitation range and the spatial distribution of cell clusters, we constructed a model of costly diffusible matrix production and related these length scales to the relatedness coefficient in social evolution theory. Our results show that production of diffusible biofilm matrix components is evolutionarily stable under conditions consistent with natural biofilm habitats and host environments. We expect the mechanisms revealed in this study to be relevant to other secreted factors that operate as cooperative public goods in bacterial communities and the concept of exploitation range and the associated analysis tools to be generally applicable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271185PMC
http://dx.doi.org/10.1073/pnas.2123469119DOI Listing

Publication Analysis

Top Keywords

biofilm matrix
12
matrix components
12
social evolution
8
biofilm formation
8
diffusible matrix
8
matrix production
8
diffusible biofilm
8
cell clusters
8
exploitation range
8
biofilm
7

Similar Publications

Biofilm formation, extracellular substance synthesis, and virulence factor production all have a major impact on drug tolerance and infection propagation caused by Staphylococcus aureus. Flavonoid compounds have been explored as potential solutions to enhance antibiotic efficacy against the biofilm formation of pathogenic microbes. Quercetin (QER) has previously demonstrated antibacterial and antibiofilm properties.

View Article and Find Full Text PDF

Leptospirosis is a zoonotic disease caused by bacteria, affecting humans and a broad range of wild and domestic animals in diverse epidemiological settings (rural, urban, and wild). The disease's pathogenesis and epidemiology are complex networks not fully elucidated. Epidemiology reflects the One Health integrated approach of environment-animal-human interaction, causing severe illness in humans and animals, with consequent public health burdens.

View Article and Find Full Text PDF

Unveiling the role of rubber seals in the generation of decentralized disinfection by-products in chlorinated water distribution systems.

Chemosphere

January 2025

University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. Electronic address:

The degradation of rubber seal (RS), particularly ethylene-propylene-diene (EPDM), in the drinking water networks has been confirmed, yet the role of RS as a disinfection by-product (DBP) precursor remains unknown. This study provides explicit proof of the formation of halogenated disinfection by-products (X-DBPs) from RS in chlorinated drinking water within water supply systems. Over time, exposure to chlorinated water ages RS, releasing high levels of organic compounds, which act as DBP precursors.

View Article and Find Full Text PDF

Chronic infections represent a significant global health and economic challenge. Biofilms, which are bacterial communities encased in an extracellular polysaccharide matrix, contribute to approximately 80% of these infections. In particular, pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus are frequently co-isolated from the sputum of patients with cystic fibrosis and are commonly found in chronic wound infections.

View Article and Find Full Text PDF

Computational exploration of the self-aggregation mechanisms of phenol-soluble modulins β1 and β2 in Staphylococcus aureus biofilms.

Colloids Surf B Biointerfaces

January 2025

School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States. Electronic address:

The formation of functional bacterial amyloids by phenol-soluble modulins (PSMs) in Staphylococcus aureus is a critical component of biofilm-associated infections, providing robust protective barriers against antimicrobial agents and immune defenses. Clarifying the molecular mechanisms of PSM self-assembly within the biofilm matrix is essential for developing strategies to disrupt biofilm integrity and combat biofilm-related infections. In this study, we analyzed the self-assembly dynamics of PSM-β1 and PSM-β2 by examining their folding and dimerization through long-timescale atomistic discrete molecular dynamics simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!