Introduction: The measurement of traumatic brain injury (TBI) 'severity' has traditionally been based on the earliest Glasgow Coma Score (GCS) recorded, however, the underlying parenchymal pathology is highly heterogonous. This heterogeneity renders prediction of outcome on an individual patient level inaccurate and makes comparison between patients both in clinical practice and research difficult. The complexity of this heterogeneity has resulted in generic all encompassing 'traumatic brain injury protocols'. Early management and studies of neuro-protectants are often done irrespective of TBI type, yet it may well be that a specific treatment may be beneficial in a subset of TBI pathologies.
Methods: A simple CT-based classification system rating the recognised types of blunt TBI (extradural, subdural, subarachnoid haemorrhage, contusions/intracerebral haematoma and diffuse axonal injury) as mild (1), moderate (2) or severe (3) is proposed. Hypoxic brain injury, a common secondary injury following TBI, is also included. Scores can be combined to reflect concomitant types of TBI and predominant location of injury is also recorded. To assess interrater reliability, 50 patient CT images were assessed by 5 independent clinicians of varying experience. Interrater reliability was calculated using overall agreement through Cronbach's alpha including confidence intervals for intra-class coefficients.
Results: Interrater reliability scores showed strong agreement for same score and same injury for TBIs with blood on CT and Cronbach's alpha co-efficient (range 0.87-0.93) demonstrated excellent correlation between raters. Cronbach's alpha was not affected when individual raters were removed.
Conclusions: The proposed simple CT classification system has good inter-rater reliability and hence potentially could enable better individual prognostication and targeted treatments to be compared while also accounting for multiple intracranial injury types. Further studies are proposed and underway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02688697.2022.2090509 | DOI Listing |
Regen Biomater
November 2024
Zhejiang Top-Medical Medical Dressing Co. Ltd, Wenzhou, Zhejiang 325025, China.
Decellularization is the process of obtaining acellular tissues with low immunogenic cellular components from animals or plants while maximizing the retention of the native extracellular matrix structure, mechanical integrity and bioactivity. The decellularized tissue obtained through the tissue decellularization technique retains the structure and bioactive components of its native tissue; it not only exhibits comparatively strong mechanical properties, low immunogenicity and good biocompatibility but also stimulates neovascularization at the implantation site and regulates the polarization process of recruited macrophages, thereby promoting the regeneration of damaged tissue. Consequently, many commercial products have been developed as promising therapeutic strategies for the treatment of different tissue defects and lesions, such as wounds, dura, bone and cartilage defects, nerve injuries, myocardial infarction, urethral strictures, corneal blindness and other orthopedic applications.
View Article and Find Full Text PDFRegen Biomater
November 2024
State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
Nerve injuries can be tantamount to severe impairment, standard treatment such as the use of autograft or surgery comes with complications and confers a shortened relief. The mechanism relevant to the regeneration of the optic nerve seems yet to be fully uncovered. The prevailing rate of vision loss as a result of direct or indirect insult on the optic nerve is alarming.
View Article and Find Full Text PDFPatterns (N Y)
December 2024
Medical Robot Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
This study developed an artificial intelligence (AI) system using a local-global multimodal fusion graph neural network (LGMF-GNN) to address the challenge of diagnosing major depressive disorder (MDD), a complex disease influenced by social, psychological, and biological factors. Utilizing functional MRI, structural MRI, and electronic health records, the system offers an objective diagnostic method by integrating individual brain regions and population data. Tested across cohorts from China, Japan, and Russia with 1,182 healthy controls and 1,260 MDD patients from 24 institutions, it achieved a classification accuracy of 78.
View Article and Find Full Text PDFBrain Spine
February 2024
Brain Physics Laboratory Division of Neurosurgery Department of Clinical Neurosciences, University of Cambridge, UK.
Introduction: Secondary insults due to high intracranial pressure (ICP), low cerebral perfusion pressure (CPP) and impaired cerebral pressure reactivity (PRx) predict outcome after severe traumatic brain injury (TBI).
Research Question: What is the prevalence, co-occurrence and prognostic importance of secondary insults due to deranged ICP, CPP or PRx after TBI.
Material And Methods: Severe TBI patients requiring ICP monitoring were included.
Front Pharmacol
December 2024
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
Introduction: Stroke is a debilitating disease and the second leading cause of death worldwide, of which ischemic stroke is the dominant type. L., also known as safflower, has been used to treat cerebrovascular diseases, especially ischemic stroke in many Asian countries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!