Tumors evolve in a dynamic communication with their native tissue environment and recruited immune cells. The diverse components of the tumor microenvironment (TME) can critically regulate tumor progression and therapeutic response. In turn, anticancer treatments may alter the composition and functions of the TME. To investigate this continuous dialog in the context of primary brain cancers, we developed a multimodal longitudinal imaging strategy. We combined macroscopical magnetic resonance imaging with subcellular resolution two-photon intravital microscopy, and leveraged the power of single-cell analysis tools to gain insights into the ongoing interactions between different components of the TME and cancer cells. Our experiments revealed that the migratory behavior of tumor-associated macrophages is different in genetically distinct glioblastomas, and in response to macrophage-targeted therapy. These results underscore the importance of studying cancer longitudinally in an setting, to reveal complex and dynamic alterations in the TME during disease progression and therapeutic intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9234718PMC
http://dx.doi.org/10.1016/j.isci.2022.104570DOI Listing

Publication Analysis

Top Keywords

tumor microenvironment
8
progression therapeutic
8
multimodal imaging
4
imaging dynamic
4
dynamic brain
4
brain tumor
4
microenvironment glioblastoma
4
glioblastoma progression
4
progression response
4
response treatment
4

Similar Publications

Insufficient radio-frequency ablation (IRFA) of hepatocellular carcinoma accelerates the recurrence of residual tumor, leading to a poor prognosis. Neutrophils (NEs), as the initial leukocytes to infiltrate the IRFA-associated inflammatory area, were utilized as drug carriers due to their inherent chemotactic properties for targeted delivery of chemotherapy drugs to the inflammatory site where residual tumor persists post-IRFA. Previous research has highlighted that the immunosuppressive cytokines in the tumor microenvironment could promote the transition of NEs into a protumorigenic phenotype.

View Article and Find Full Text PDF

Background: Damage-associated molecular patterns (DAMPs) induced by immunogenic cell death (ICD) may be useful for the immunotherapy to patients undergoing pancreatic ductal adenocarcinoma (PDAC). The aim of this study is to predict the prognosis and immunotherapy responsiveness of PDAC patients using DAMPs-related genes.

Methods: K-means analysis was used to identify the DAMPs-related subtypes of 175 PDAC cases.

View Article and Find Full Text PDF

Background And Purpose: The characteristics and role of NOD-like receptor (NLR) signaling pathway in high-grade gliomas were still unclear. This study aimed to reveal the association of NLR with clinical heterogeneity of glioblastoma (GBM) patients, and to explore the role of NLR pathway hub genes in the occurrence and development of GBM.

Methods: Transcriptomic data from 496 GBM patients with complete prognostic information were obtained from the TCGA, GEO, and CGGA databases.

View Article and Find Full Text PDF

The tumor microenvironment has recently been well-studied in various gastrointestinal cancers, including colorectal cancer (CRC). The gut microbiota, a collection of microorganisms in the human gastrointestinal tract, is one of the microenvironments associated with colon carcinogenesis. It has been challenging to elucidate the mechanisms by which gut microbiota contributes to carcinogenesis and cancer progression due to complex interactions with the host, including its metabolites and immune and inflammatory responses.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) accounts for over 80% of primary liver cancers and is the third leading cause of cancer-related deaths worldwide. Hepatitis B virus (HBV) infection is the primary etiological factor. Disulfidptosis is a newly discovered form of regulated cell death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!