Menthol has been shown to exacerbate elements of nicotine addiction in humans and rodents; however, the mechanisms mediating its effects are not fully understood. This study examined the impact of genetic factors in menthol's effects on oral nicotine consumption by comparing two inbred mouse strains with differing sensitivities to nicotine. C57BL/6J (B6J) mice are nicotine-preferring, while DBA/2J (D2J) mice are not. While the effects of menthol on oral nicotine consumption have been highlighted in B6J mice, it is unknown if they extend to the D2J strain as well. Consequently, adolescent (PND 21) and adult (PND 63), male and female D2J mice were subjected to the nicotine two-bottle choice (2BC) paradigm with orally and systemically administered menthol. Then, we evaluated its impact on nicotine pharmacological responses in conditioned reward and nociception after systemic administration and, lastly, investigated the potential involvement of the TAAR1 gene and α7 nAChRs in menthol's effects. Menthol failed to enhance oral nicotine consumption in adult and adolescent female and male D2J mice. Moreover, this lack in effect was not due to nicotine concentration, oral aversion to menthol, or basal preference for nicotine. Menthol also failed to augment nicotine reward or enhance nicotine-induced antinociception in D2J mice, demonstrating that genetic background plays a significant role in sensitivity to menthol's effects on nicotine. Furthermore, TAAR1 or α7 nAChRs did not seem to mediate menthol's differential effects in D2J mice. These findings support the existence of genotype-specific mechanisms that may contribute to the variable effects of menthol in different populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9234577PMC
http://dx.doi.org/10.3389/fnins.2022.905330DOI Listing

Publication Analysis

Top Keywords

d2j mice
20
effects menthol
16
nicotine
12
menthol's effects
12
oral nicotine
12
nicotine consumption
12
effects
8
menthol
8
mice
8
b6j mice
8

Similar Publications

The objective of this study was to determine the influence of sex and strain on the dysregulation of trace element concentration and associative gene expression due to diet induced obesity in adipose tissue and the liver. Male and female C57BL/6J (B6J) and DBA/2J (D2J) were randomly assigned to a normal-fat diet (NFD) containing 10% kcal fat/g or a mineral-matched high-fat diet (HFD) containing 60% kcal fat/g for 16 weeks. Liver and adipose tissue were assessed for copper, iron, manganese, and zinc concentrations and related changes in gene expression.

View Article and Find Full Text PDF

Background: Identifying genetic variants that affect the level of cell cycle reentry and establishing the degree of cell cycle progression in those variants could help guide development of therapeutic interventions aimed at effecting cardiac regeneration. We observed that C57Bl6/NCR (B6N) mice have a marked increase in cardiomyocyte S-phase activity after permanent coronary artery ligation compared with infarcted DBA/2J (D2J) mice.

Methods: Cardiomyocyte cell cycle activity after infarction was monitored in D2J, (D2J×B6N)-F1, and (D2J×B6N)-F1×D2J backcross mice by means of bromodeoxyuridine or 5-ethynyl-2'-deoxyuridine incorporation using a nuclear-localized transgenic reporter to identify cardiomyocyte nuclei.

View Article and Find Full Text PDF

Genotypic Differences in the Effects of Menthol on Nicotine Intake and Preference in Mice.

Front Neurosci

June 2022

Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, United States.

Menthol has been shown to exacerbate elements of nicotine addiction in humans and rodents; however, the mechanisms mediating its effects are not fully understood. This study examined the impact of genetic factors in menthol's effects on oral nicotine consumption by comparing two inbred mouse strains with differing sensitivities to nicotine. C57BL/6J (B6J) mice are nicotine-preferring, while DBA/2J (D2J) mice are not.

View Article and Find Full Text PDF

Background: Obesity has been linked to behavioral and biochemical changes, such as reduced physical activity, dysregulated dopamine metabolism, and gene expression alterations in the brain. The impact of a continuous high-fat diet and resulting state of obesity may vary depending on sex and genetics.

Objective: The aim of this study was to investigate the impact of a high-fat diet on physical activity, gene expression in the striatum, and dopamine neurochemistry using male and female mice from different strains as a model to examine sex and strain influences on dopamine-mediated behavior and neurobiology.

View Article and Find Full Text PDF

The aim of this study was to determine the impact of diet-induced obesity (DIO) on trace element homeostasis and gene expression in the olfactory bulb and to identify potential interaction effects between diet, sex, and strain. Our study is based on evidence that obesity and olfactory bulb impairments are linked to neurodegenerative processes. Briefly, C57BL/6J (B6J) and DBA/2J (D2J) male and female mice were fed either a low-fat diet or a high-fat diet for 16 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!