AI Article Synopsis

  • The study investigates how an extract from a medicinal plant (MGE) affects obesity by influencing gut microbiota.
  • MGE treatment significantly reduced weight gain and fat tissue in mice on a high-fat diet while also improving conditions like fatty liver and insulin sensitivity.
  • The research highlights that MGE restores the balance of gut bacteria disrupted by high-fat diets, which contributes to its obesity-fighting effects.

Article Abstract

is a kind of medicinal food plant. The mogroside-rich extract (MGE) of its fruits can effectively ameliorate obesity, but the underlying mechanisms remain underexplored. In this study, we aimed to determine whether MGE can ameliorate obesity by protecting against the divergences of gut microbiota. Mice were challenged with a high-fat diet (HFD) and treated with MGE by oral gavage. Then, the characteristics of the gut microbiota were determined by 16S rDNA analysis. Our findings showed that MGE could significantly reduce body weight gain and fat tissue weight of the mice fed with HFD. Moreover, MGE markedly attenuated fatty liver, and improved glucose tolerance and insulin sensitivity. We further found that the gut microbiota structures were disturbed by HFD feeding. In particular, the abundance of was increased and the abundance of was decreased, resulting in an increased proportion of to (F/B), which contributes to obesity. Interestingly, the abnormal proportion of F/B of HFD feeding mice was restored to the level of control mice by MGE treatment. Additionally, the abundances of obesogenic microbiota, such as and were also decreased after MGE treatment. In summary, our findings demonstrate that MGE can modulate gut microbiota in obese mice and shed new light on how it alleviates obesity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9234556PMC
http://dx.doi.org/10.3389/fnut.2022.870394DOI Listing

Publication Analysis

Top Keywords

gut microbiota
20
mogroside-rich extract
8
microbiota mice
8
mge
8
ameliorate obesity
8
hfd feeding
8
proportion f/b
8
mge treatment
8
microbiota
6
mice
6

Similar Publications

The emergence of Next Generation Sequencing (NGS) technology has catalyzed a paradigm shift in clinical diagnostics and personalized medicine, enabling unprecedented access to high-throughput microbiome data. However, the inherent high dimensionality, noise, and variability of microbiome data present substantial obstacles to conventional statistical methods and machine learning techniques. Even the promising deep learning (DL) methods are not immune to these challenges.

View Article and Find Full Text PDF

Microbiota in the gastrointestinal tract (GIT) consisting of the rumen and hindgut (the small intestine, cecum and colon) in dairy calves play a vital role in their growth and development. This review discusses the development of dairy calf intestinal microbiomes with an emphasis on the impact that husbandry and rearing management have on microbiome development, health and growth of pre-weaned dairy calves. The diversity and composition of the microbes that colonize the lower GIT (small and large intestine) can have a significant impact on the growth and development of the calf, through influence on nutrient metabolism, immune modulation, resistance or susceptibility to infection, production outputs and behaviour modification in adult life.

View Article and Find Full Text PDF

Prebiotics, traditionally linked to gut health, are increasingly recognized for their systemic benefits, influencing multiple organ systems through interactions with the gut microbiota. Compounds like inulin, fructooligosaccharides (FOS), and galactooligosaccharides (GOS) enhance short-chain fatty acid (SCFA) production, benefiting neurocognitive health, cardiovascular function, immune modulation, and skin integrity. Advances in biotechnology, including deep eutectic solvents (DES) for extraction and machine learning (ML) for personalized formulations, have expanded prebiotic applications.

View Article and Find Full Text PDF

Abdominal LIPUS Stimulation Prevents Cognitive Decline in Hind Limb Unloaded Mice by Regulating Gut Microbiota.

Mol Neurobiol

January 2025

Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200433, China.

Weightlessness usually causes disruption of the gut microbiota and impairs cognitive function. There is a close connection between gut microbiota and neurological diseases. Low-intensity pulsed ultrasound (LIPUS) has a beneficial effect on reducing intestinal inflammation.

View Article and Find Full Text PDF

Ulcerative colitis is a long-term inflammatory colon illness that significantly affects patients quality of life. Traditional medicines and therapies often come with challenges such as side effects, instability, unpredictability, and high costs. This has captured interest in natural products that have huge health benefits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!