The emerging field of advanced therapy medicinal products (ATMP) holds promise of treating a variety of diseases. Adipose-derived stromal cells (ASCs) are currently being marketed or tested as cell-based therapies in numerous clinical trials. To ensure safety and efficacy of treatments, high-quality products must be manufactured. A good manufacturing practice (GMP) compliant and consistent manufacturing process including validated quality control methods is critical. Product design and formulation are equally important to ensure clinical feasibility. Here, we present a GMP-compliant, xeno-free, and semiautomated manufacturing process and quality controls, used for large-scale production of a cryopreserved off-the-shelf ASC product and tested in several phase I and II allogeneic clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9236818PMC
http://dx.doi.org/10.1155/2022/4664917DOI Listing

Publication Analysis

Top Keywords

gmp compliant
8
production cryopreserved
8
adipose-derived stromal
8
allogeneic clinical
8
manufacturing process
8
compliant production
4
cryopreserved adipose-derived
4
stromal cell
4
cell product
4
product feasible
4

Similar Publications

A xenogenic-free culture medium for cell micro-patterning systems as cell-instructive biomaterials for potential clinical applications.

Biomed Mater

December 2024

G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis; Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Engesserstr. 4, Freiburg im Breisgau, 79108, GERMANY.

Cell micro-patterning controls cell fate and function and has potential for generating therapeutically usable mesenchymal stromal cell (MSC) populations with precise functions. However, to date, the micro-patterning of human cells in a translational context has been impossible because only ruminant media supplements, e.g.

View Article and Find Full Text PDF

Background Aims: The need for large-scale production of mesenchymal stromal cell (MSC)-based cellular therapeutics continues to grow around the globe. Manual cell expansion processes can be highly variable between operators, require significant hands-on time from skilled staff and, because of the large number of open manipulation steps required to produce cells in dose-relevant quantities, be prone to greater risk of contamination relative to automated processes. All of these can increase overall production costs and risks to the patient.

View Article and Find Full Text PDF

Recent studies have revealed the potential of tumor-infiltrating lymphocytes (TILs) to treat solid tumors effectively and safely. However, the translation of TIL therapy for patients is still hampered by non-standardized and laborious manufacturing procedures that are expensive and produce highly variable cellular products. To address these limitations, the CliniMACS Prodigy Tumor Reactive T cell (TRT) Process has been developed.

View Article and Find Full Text PDF

Background: Chimeric antigen receptor T (CAR-T) cells have significantly advanced the treatment of cancers such as leukemia and lymphoma. Traditionally, T cells are collected from patients through leukapheresis, an expensive and potentially invasive process that requires specialized equipment and trained personnel. Although whole blood collections are much more technically straightforward, whole blood starting material has not been widely utilized for clinical CAR-T cell manufacturing, in part due to lack of manufacturing processes designed for use in a good manufacturing practice (GMP) environment.

View Article and Find Full Text PDF

Pectin/caffeic acid nanoparticles in a poloxamer thermosensitive gel for the treatment of ulcerative colitis by inhibiting cGAS-STING pathway.

Colloids Surf B Biointerfaces

November 2024

Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China. Electronic address:

Ulcerative colitis is a recurring condition that causes inflammation and sores in the digestive system. Current clinical treatments for ulcerative colitis have limitations due to side effects and poor patient compliance. This study investigates the therapeutic potential of a novel drug delivery system, CA-Gel, which comprises caffeic acid (CA) stabilized by pectin nanoparticles within a poloxamer thermosensitive gel for rectal administration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!