Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Significant progress has been witnessed in within-subject seizure detection from electroencephalography (EEG) signals. Consequently, more and more works have been shifted from within-subject seizure detection to cross-subject scenarios. However, the progress is hindered by inter-patient variations caused by gender, seizure type, etc.To tackle this problem, we propose a multi-view cross-object seizure detection model with information bottleneck attribution (IBA).Feature representations specific to seizures are learned from raw EEG data by adversarial deep learning. Combined with the manually designed discriminative features, the model can detect seizures across different subjects. In addition, we introduce IBA to provide insights into the decision-making of the adversarial learning process, thus enhancing the interpretability of the model.Extensive experiments are conducted on two benchmark datasets. The experimental results verify the efficacy of the model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1741-2552/ac7d0d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!