AI Article Synopsis

  • Species richness varies globally, influenced by factors like diversification rates, climate, and ecological capacities, particularly in seed plants, which are key to terrestrial ecosystems.
  • A study using extensive data on 332,000 seed plant species found that diversification rates and species richness patterns are independent, contradicting theories like the Metabolic Theory of Ecology.
  • The main drivers of species richness were identified as climate and environmental heterogeneity, suggesting that high species richness is likely due to historical factors or the ecological capacities of certain environments, rather than diversification rates.

Article Abstract

Species richness varies immensely around the world. Variation in the rate of diversification (speciation minus extinction) is often hypothesized to explain this pattern, while alternative explanations invoke time or ecological carrying capacities as drivers. Focusing on seed plants, the world's most important engineers of terrestrial ecosystems, we investigated the role of diversification rate as a link between the environment and global species richness patterns. Applying structural equation modeling to a comprehensive distribution dataset and phylogenetic tree covering all circa 332,000 seed plant species and 99.9% of the world's terrestrial surface (excluding Antarctica), we test five broad hypotheses postulating that diversification serves as a mechanistic link between species richness and climate, climatic stability, seasonality, environmental heterogeneity, or the distribution of biomes. Our results show that the global patterns of species richness and diversification rate are entirely independent. Diversification rates were not highest in warm and wet climates, running counter to the Metabolic Theory of Ecology, one of the dominant explanations for global gradients in species richness. Instead, diversification rates were highest in edaphically diverse, dry areas that have experienced climate change during the Neogene. Meanwhile, we confirmed climate and environmental heterogeneity as the main drivers of species richness, but these effects did not involve diversification rates as a mechanistic link, calling for alternative explanations. We conclude that high species richness is likely driven by the antiquity of wet tropical areas (supporting the "tropical conservatism hypothesis") or the high ecological carrying capacity of warm, wet, and/or environmentally heterogeneous environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271200PMC
http://dx.doi.org/10.1073/pnas.2120662119DOI Listing

Publication Analysis

Top Keywords

species richness
32
diversification rate
12
diversification rates
12
species
9
diversification
8
richness
8
alternative explanations
8
ecological carrying
8
mechanistic link
8
environmental heterogeneity
8

Similar Publications

Monitoring of ant species surrounding the ports of South Korea.

Biodivers Data J

January 2025

Research Policy Planning Team, National Institute of Ecology, Seocheon 33657, Republic of Korea Research Policy Planning Team, National Institute of Ecology Seocheon 33657 Republic of Korea.

The introduction and spread of invasive insects is accelerating worldwide owing to human activities, such as trade and transportation development; in particular, ports are hubs and routes for invasive insects, including ants. We surveyed ant populations in eight ports from 2021 to 2023 using pitfall traps. A total of 316,975 ants belonging to four subfamilies, 26 genera and 44 species were identified as , , and .

View Article and Find Full Text PDF

What is left in miombo woodlands? Rarity and commonness of woody species, commercial timber species, and lawful harvestable diameter classes.

Heliyon

January 2025

Departamento de Engenharia Florestal, Universidade Eduardo Mondlane, Av. Julius Nyerere Número 3453, Campus Universitário Principal, Edifício Número 1, 257, Maputo, Mozambique.

Mozambican miombo woodlands (MWs) have been experiencing severe anthropogenic threats, recognized to have an impact on plant species distribution, occurrence, diversity, and rarity patterns. Based on 3725 0.1 ha plots distributed across the country's MWs, this study aimed to assess the species rarity and commonness, protection status, and availability of commercial timber in MWs under varied environmental conditions.

View Article and Find Full Text PDF

Temperature-dependent variations in under-canopy herbaceous foliar diseases following shrub encroachment in grasslands.

Nat Commun

January 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.

Shrub encroachment into grasslands poses a global concern, impacting species biodiversity and ecosystem functioning. Yet, the effect of shrub encroachment on herbaceous diseases and the dependence of that effect on climatic factors remain ambiguous. This study spans over 4,000 km, examining significant variability in temperature and precipitation.

View Article and Find Full Text PDF

Sodium alginate/low methoxyl pectin composite hydrogel beads prepared via gas-shearing technology for enhancing the colon-targeted delivery of probiotics and modulating gut microbiota.

Int J Biol Macromol

January 2025

College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, Shaanxi, China. Electronic address:

The probiotic encapsulation system has the potential to enhance the prebiotic effects of probiotics. However, challenges arise from the release behavior of this system in vivo and the large size of hydrogel beads. This study aims to address the issues related to the size of previous hydrogel beads and assess the colon-targeted delivery of probiotic polysaccharides composite hydrogel beads (PPHB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!