Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mind-wandering (MW), which is usually defined as a lapse of attention has negative effects on our daily life. Therefore, detecting when MW occurs can prevent us from those negative outcomes resulting from MW. In this work, we first collected a multi-modal Sustained Attention to Response Task (MM-SART) database for MW detection. Eighty-two participants' data were collected in our dataset. For each participant, we collected measures of 32-channels electroencephalogram (EEG) signals, photoplethysmography (PPG) signals, galvanic skin response (GSR) signals, eye tracker signals, and several questionnaires for detailed analyses. Then, we propose an effective MW detection system based on the collected EEG signals. To explore the non-linear characteristics of the EEG signals, we utilize entropy-based features. The experimental results show that we can reach 0.712 AUC score by using the random forest (RF) classifier with the leave-one-subject-out cross-validation. Moreover, to lower the overall computational complexity of the MW detection system, we propose correlation importance feature elimination (CIFE) along with AUC-based channel selection. By using two most significant EEG channels, we can reduce the training time of the classifier by 44.16%. By applying CIFE on the feature set, we can further improve the AUC score to 0.725 but with only 14.6% of the selection time compared with the recursive feature elimination (RFE). Finally, we can apply the current work to educational scenarios nowadays, especially in remote learning systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2022.3187346 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!