AI Article Synopsis

  • The study evaluated different deep learning architectures for MyoMapNet, a model designed for myocardial T estimation using limited T-weighted images.
  • VGG19 and ResNet50 underperformed in producing accurate T maps, while ResUNet provided good quality but underestimated T values; FC and U-Net models performed best overall.
  • The findings suggest that U-Net and FC models allow for quick and precise myocardial T mapping using just four images, with U-Net offering a slight edge in precision.

Article Abstract

The objective of the current study was to investigate the performance of various deep learning (DL) architectures for MyoMapNet, a DL model for T estimation using accelerated cardiac T mapping from four T -weighted images collected after a single inversion pulse (Look-Locker 4 [LL4]). We implemented and tested three DL architectures for MyoMapNet: (a) a fully connected neural network (FC), (b) convolutional neural networks (VGG19, ResNet50), and (c) encoder-decoder networks with skip connections (ResUNet, U-Net). Modified Look-Locker inversion recovery (MOLLI) images from 749 patients at 3 T were used for training, validation, and testing. The first four T -weighted images from MOLLI5(3)3 and/or MOLLI4(1)3(1)2 protocols were extracted to create accelerated cardiac T mapping data. We also prospectively collected data from 28 subjects using MOLLI and LL4 to further evaluate model performance. Despite rigorous training, conventional VGG19 and ResNet50 models failed to produce anatomically correct T maps, and T values had significant errors. While ResUNet yielded good quality maps, it significantly underestimated T . Both FC and U-Net, however, yielded excellent image quality with good T accuracy for both native (FC/U-Net/MOLLI = 1217 ± 64/1208 ± 61/1199 ± 61 ms, all p < 0.05) and postcontrast myocardial T (FC/U-Net/MOLLI = 578 ± 57/567 ± 54/574 ± 55 ms, all p < 0.05). In terms of precision, the U-Net model yielded better T precision compared with the FC architecture (standard deviation of 61 vs. 67 ms for the myocardium for native [p < 0.05], and 31 vs. 38 ms [p < 0.05], for postcontrast). Similar findings were observed in prospectively collected LL4 data. It was concluded that U-Net and FC DL models in MyoMapNet enable fast myocardial T mapping using only four T -weighted images collected from a single LL sequence with comparable accuracy. U-Net also provides a slight improvement in precision.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9532368PMC
http://dx.doi.org/10.1002/nbm.4794DOI Listing

Publication Analysis

Top Keywords

accelerated cardiac
12
cardiac mapping
12
deep learning
8
learning architectures
8
architectures myomapnet
8
-weighted images
8
vgg19 resnet50
8
impact deep
4
architectures accelerated
4
mapping myomapnet
4

Similar Publications

Background: Coronary stenting operations have become the main option for the treatment of coronary heart disease. Vessel recovery after stenting has emerged as a critical factor in reducing possible complications. In this study, we evaluated the feasibility, safety and efficacy of locally administered intraluminal gene therapy delivered using a specialized infusion balloon catheter.

View Article and Find Full Text PDF

Nuclear Cardiology Surrogate Biomarkers in Clinical Trials.

J Nucl Med

January 2025

Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California;

Nuclear cardiology offers a diverse range of imaging tools that provide valuable insights into myocardial perfusion, inflammation, metabolism, neuroregulation, thrombosis, and microcalcification. These techniques are crucial not only for diagnosing and managing cardiovascular conditions but also for gaining pathophysiologic insights. Surrogate biomarkers in nuclear cardiology, represented by detectable imaging changes, correlate with disease processes or therapeutic responses and can serve as endpoints in clinical trials when they demonstrate a clear link with these processes.

View Article and Find Full Text PDF

Introduction: Chronic hand ischaemia may affect some haemodialysis patients with an arteriovenous fistula (AVF) or graft (AVG), a condition known as haemodialysis access-induced distal ischaemia (HAIDI). Duplex ultrasonography (DUS) can provide comprehensive insights into anatomical and perfusion properties, and measuring the hand acceleration time (HAT) has been demonstrated to be sensitive within the framework of chronic upper limb ischaemia.

Methods And Analysis: This single-centre, prospective cohort study will involve adult end-stage renal disease (ESRD) patients requiring either AVF or AVG for haemodialysis.

View Article and Find Full Text PDF

Each human genome has approximately 5 million DNA variants. Even for complete loss-of-function variants causing inherited, monogenic diseases, current understanding based on gene-specific molecular function does not adequately predict variability observed between people with identical mutations or fluctuating disease trajectories. We present a parallel paradigm for loss-of-function variants based on broader consequences to the cell when aberrant polypeptide chains of amino acids are translated from mutant RNA to generate mutated proteins.

View Article and Find Full Text PDF

Audio-visual concert performances synchronize audience's heart rates.

Ann N Y Acad Sci

January 2025

Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.

People enjoy engaging with music. Live music concerts provide an excellent option to investigate real-world music experiences, and at the same time, use neurophysiological synchrony to assess dynamic engagement. In the current study, we assessed engagement in a live concert setting using synchrony of cardiorespiratory measures, comparing inter-subject, stimulus-response, correlation, and phase coherence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!