Legumes, being angiosperm's third-largest family as well as the second major crop family, contributes beyond 33% of human dietary proteins. The advent of the global food crisis owing to major climatic concerns leads to nutritional deprivation, hunger and hidden hunger especially in developing and underdeveloped nations. Hence, in the wake of promoting sustainable agriculture and nutritional security, apart from the popular legumes, the inclusion of lesser-known and understudied local crop legumes called orphan legumes in the farming systems of various tropical and sub-tropical parts of the world is indeed a need of the hour. Despite possessing tremendous potentialities, wide adaptability under diverse environmental conditions, and rich in nutritional and nutraceutical values, these species are still in a neglected and devalued state. Therefore, a major re-focusing of legume genetics, genomics, and biology is much crucial in pursuance of understanding the yield constraints, and endorsing underutilized legume breeding programs. Varying degrees of importance to these crops do exist among researchers of developing countries in establishing the role of orphan legumes as future crops. Under such circumstances, this article assembles a comprehensive note on the necessity of promoting these crops for further investigations and sustainable legume production, the exploitation of various orphan legume species and their potencies. In addition, an attempt has been made to highlight various novel genetic, molecular, and omics approaches for the improvement of such legumes for enhancing yield, minimizing the level of several anti-nutritional factors, and imparting biotic and abiotic stress tolerance. A significant genetic enhancement through extensive research in 'omics' areas is the absolute necessity to transform them into befitting candidates for large-scale popularization around the globe.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-022-03923-1 | DOI Listing |
Front Plant Sci
December 2024
School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
Chickpeas are a vital source of protein and starch for a large portion of the world's population and are known to be impacted by heat stress at every life stage. Previously known as an "Orphan Legume", little is known of the genetic control of heat stress tolerance, and most previous research has focused on heat avoidance rather than tolerance. This study utilised a population of 148 chickpea genotypes, primarily Kabulis, in 12 field trials conducted at 2 locations, two sowing periods, and across 3 years.
View Article and Find Full Text PDFJ Exp Bot
December 2024
Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
Our current agricultural system faces a perfect storm-climate change, burgeoning population, and unpredictable outbreaks like COVID-19 disrupt food production, particularly for vulnerable populations in developing countries. A paradigm shift in agriculture practices is needed to tackle these issues. One solution is the diversification of crop production.
View Article and Find Full Text PDFFront Plant Sci
August 2024
Institute of Architecture and Earth Science, University Ferhat Abbas-Setif 1, Setif, Algeria.
In developing countries, orphan legumes stand at the forefront in the struggle against climate change. Their high nutrient value is crucial in malnutrition and chronic diseases prevention. However, as the 'orphan' definition suggests, their seed systems are still underestimated and seed production is scanty.
View Article and Find Full Text PDFJ Appl Genet
September 2024
University of Agricultural Sciences, Bangalore, Karnataka, India.
In the era of genomic-assisted breeding for crop improvement, developing new molecular markers and validating them for use in breeding programs are the prelude. Dolichos bean is one of the most important vegetable legume crops owing to its nutrient-rich green pods used as vegetables. Limitations in genomic resources, including molecular markers, restrict the accelerated improvement of the crop.
View Article and Find Full Text PDFPlant Biol (Stuttg)
June 2024
Department of Biotechnology, Visva-Bharati, Santiniketan, India.
Pigeon pea (Cajanus cajan) is widely cultivated for its nutritional and medicinal value yet remains an orphan crop as productivity has not been improved because of a lack of genome and non-coding genome information. Non-coding RNAs, like miRNAs and long non-coding RNAs (lncRNAs), are involved in regulation of growth, metabolism, development, and stress response, and have a critical role in post-transcriptional gene regulation (PTGR). We attempted to elucidate the roles of miRNAs and lncRNAs in pigeon pea through experimental validation of computationally predicted miRNAs and lncRNAs and targets of miRNAs on mRNAs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!