A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spectroscopic and Structural Characterization of Reduced Hildenborough W-FdhAB Reveals Stable Metal Coordination during Catalysis. | LitMetric

Spectroscopic and Structural Characterization of Reduced Hildenborough W-FdhAB Reveals Stable Metal Coordination during Catalysis.

ACS Chem Biol

Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.

Published: July 2022

Metal-dependent formate dehydrogenases are important enzymes due to their activity of CO reduction to formate. The tungsten-containing FdhAB formate dehydrogenase from Hildenborough is a good example displaying high activity, simple composition, and a notable structural and catalytic robustness. Here, we report the first spectroscopic redox characterization of FdhAB metal centers by EPR. Titration with dithionite or formate leads to reduction of three [4Fe-4S] clusters, and full reduction requires Ti(III)-citrate. The redox potentials of the four [4Fe-4S] centers range between -250 and -530 mV. Two distinct W signals were detected, W and W, which differ in only the -value. This difference can be explained by small variations in the twist angle of the two pyranopterins, as determined through DFT calculations of model compounds. The redox potential of W was determined to be -370 mV when reduced by dithionite and -340 mV when reduced by formate. The crystal structure of dithionite-reduced FdhAB was determined at high resolution (1.5 Å), revealing the same structural alterations as reported for the formate-reduced structure. These results corroborate a stable six-ligand W coordination in the catalytic intermediate W state of FdhAB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774666PMC
http://dx.doi.org/10.1021/acschembio.2c00336DOI Listing

Publication Analysis

Top Keywords

formate
5
spectroscopic structural
4
structural characterization
4
characterization reduced
4
reduced hildenborough
4
hildenborough w-fdhab
4
w-fdhab reveals
4
reveals stable
4
stable metal
4
metal coordination
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!