There is evidence that contaminants can transform at the elevated temperatures of thermal remediation; however, the contribution of redox active minerals to transformation has not been investigated. Three redox active minerals (, birnessite (MnO), magnetite (FeO), and hematite (FeO)) and one redox inactive mineral (Ottawa sand (SiO)) were spiked with pyrene and thermally treated. Under dry, anoxic conditions, 100%, 75% ± 3%, 70% ± 15%, and 14% ± 28% of the initial pyrene mass was removed with birnessite, magnetite, hematite, and Ottawa sand, respectively, after treatment at 250 °C for 30 min. Under wet, oxic conditions, 92% ± 8%, 86% ± 12%, 79% ± 4%, and 42% ± 7% was removed for the same minerals, respectively, after treatment at only 150 °C for 30 min. Baseline studies with Ottawa sand resulted in volatilization alone of pyrene with no transformation observed. Increased pyrene loading was used to evaluate potential transformation pathways based on identified by-products, demonstrating that both oxidative and reductive pathways were operative depending on the conditions. Reaction products in the presence of redox active minerals indicate transformation was dominated by reduction hydrogenation in dry experiments, and by oxidation hydroxyl radicals in wet experiments. The latter was unexpected, because only low hydroxyl radical concentrations have been detected in mineral-water systems at ambient temperature. These results indicate that understanding dominant reaction pathways and products is advantageous for the design of efficient and safe thermally enhanced treatment systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2em00027jDOI Listing

Publication Analysis

Top Keywords

redox active
12
active minerals
12
ottawa sand
12
thermal remediation
8
°c min
8
fate pyrene
4
pyrene mineral
4
mineral surfaces
4
surfaces thermal
4
remediation function
4

Similar Publications

Fulfilment of energy demand by utilizing renewable energy sources that do not contribute to the production of greenhouse gases is a step forward in mitigating global warming. However, with the energy sources being intermittent in nature, renewable energy needs to be stored effectively on a grid scale. In this context, the development of redox-flow batteries has emerged as a promising technology where charging and discharging processes are accomplished by the redox shuttling of the electrolytes, namely anolytes and catholytes.

View Article and Find Full Text PDF

A metal-organic framework with mixed electron donor and electron acceptor ligands for efficient lithium-ion storage.

Chem Commun (Camb)

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.

Electron donor tetrathiafulvalene (TTF) and electron acceptor naphthalene diimide (NDI) derivatives were used to synthesize a 3D Zn-TTF/NDI-MOF. Multiple redox active sites and charge transfer endow the pristine MOF anode with excellent rate behavior and long term cycling performance (with an average specific capacity of 956 mA h g at 1 A g over 600 cycles). This study highlights the great potential of elaborately-designed MOFs for developing efficient anode materials.

View Article and Find Full Text PDF

Drought stress remains a serious concern in L. var , cultivar Satabdi (IET4786) production, particularly during the earliest growth phases, ultimately affecting yield due to the recent trend of delayed rain arrival in West Bengal, India. This study aimed to develop a cost-effective strategy to improve the drought tolerance capacity of rice seedlings by priming the seeds with flavonoid-enriched extract (FEE) of French marigold () petals to withstand the initial drought milieu.

View Article and Find Full Text PDF

Background: Amiodarone, a common antiarrhythmic drug, is known for its severe side effects, including pulmonary toxicity, which involves oxidative stress and apoptosis. Artemisinin, an antimalarial drug, has shown cytoprotective properties by inhibiting oxidative stress and apoptosis. This study investigated the protective effects of artemisinin against amiodarone-induced toxicity in human bronchial epithelial cells (BEAS-2B) and mouse models.

View Article and Find Full Text PDF

Organoselenocyanates have attracted considerable attention in recent years due to their therapeutic potential and versatility in medicinal chemistry. Here, we report on the mechanism of inhibition by 5-phenylcarbamoylpentyl selenocyanide (SelSA-2), an analogue of the well-characterized histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA, a.k.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!