Developing nanomedicine with highly adaptive behaviors has shown great effectiveness in cancer treatment. However, the multi-functional integration of nano-therapeutic systems inevitably leads to complexity in the structure and impairs the operational efficiency or performance. Herein, we describe a novel nano-therapeutic system, G4-AB, capable of simultaneous dual conversions of the size and charge while targeting the acidic tumor microenvironment. G4-AB, containing a hydrophobic inner cavity for doxorubicin (DOX) loading, was synthesized by modifying amine-terminated 4th-generation polyamidoamine (G4-PAMAM) dendrimers with acylsulfonamide betaine (AB). Due to the dipole-dipole interaction among the AB moieties, G4-AB self-assembles to form micellar clusters with a zwitterionic surface. Possessing an anti-fouling property and suitable size, G4-AB exhibits optimized blood circulation under physiological pH conditions. Moreover, the extracellular pH value of the tumor microenvironment (pH 6.5) can trigger the protonation of acylsulfonamide, resulting in the cationization of AB and dissociation of G4-AB into unimolecular micelles (∼12 nm) due to electrostatic repulsion. The synergistic dual conversions further ensure drug accumulation with enhanced tumor penetration and cell internalization. The and experiments demonstrate that the G4-AB-DOX nano-therapeutic system possesses better antitumor efficiency and lower toxicity than free DOX or PEGylated PAMAM.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2bm00643jDOI Listing

Publication Analysis

Top Keywords

tumor microenvironment
12
size charge
8
acidic tumor
8
nano-therapeutic system
8
dual conversions
8
g4-ab
5
synergistic size
4
charge conversions
4
conversions functionalized
4
functionalized pamam
4

Similar Publications

The Role of Innate Priming in Modifying Tumor-associated Macrophage Phenotype.

Front Biosci (Landmark Ed)

December 2024

Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, 8011 Christchurch, Aotearoa New Zealand.

Tumor-associated macrophages (TAMs) are innate immune cells that exert far reaching influence over the tumor microenvironment (TME). Depending on cues within the local environment, TAMs may promote tumor angiogenesis, cancer cell invasion and immunosuppression, or, alternatively, inhibit tumor progression via neoantigen presentation, tumoricidal reactive oxygen species generation and pro-inflammatory cytokine secretion. Therefore, TAMs have a pivotal role in determining tumor progression and response to therapy.

View Article and Find Full Text PDF

As one of the most common solid pediatric cancers, Neuroblastoma (NBL) accounts for 15% of all of the cancer-related mortalities in infants with increasing incidence all around the world. Despite current therapeutic approaches for NBL (radiotherapies, surgeries, and chemotherapies), these approaches could not be beneficial for all of patients with NBL due to their low effectiveness, and some severe side effects. These challenges lead basic medical scientists and clinical specialists toward an optimal medical interventions for clinical management of NBL.

View Article and Find Full Text PDF

Prognostic and Predictive Biomarkers of Oligometastatic NSCLC: New Insights and Clinical Applications.

JTO Clin Res Rep

December 2024

Department of Pulmonary Diseases, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands.

This review discusses the current data on predictive and prognostic biomarkers in oligometastatic NSCLC and discusses whether biomarkers identified in other stages and widespread metastatic disease can be extrapolated to the oligometastatic disease (OMD) setting. Research is underway to explore the prognostic and predictive value of biological attributes of tumor tissue, circulating cells, the tumor microenvironment, and imaging findings as biomarkers of oligometastatic NSCLC. Biomarkers that help define true OMD and predict outcomes are needed for patient selection for oligometastatic treatment, and to avoid futile treatments in patients that will not benefit from locoregional treatment.

View Article and Find Full Text PDF

Immunotherapy is one of the research hotspots in colorectal cancer field in recent years. The colorectal cancer patients with mismatch repair-deficient (dMMR) or high microsatellite instability (MSI-H) are the primary beneficiaries of immunotherapy. However, the vast majority of colorectal cancers are mismatch repair proficient (pMMR) or microsatellite stability (MSS), and their immune microenvironment is characterized by "cold tumors" that are generally insensitive to single immunotherapy based on immune checkpoint inhibitors (ICIs).

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related deaths with a 5-year survival rate of 13%. Surgical resection remains the only curative option as systemic therapies offer limited benefit. Poor response to chemotherapy and immunotherapy is due, in part, to the dense stroma and heterogeneous tumor microenvironment (TME).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!