Background: Respiratory motion correction is of importance in studies of coronary plaques employing F-NaF; however, the validation of motion correction techniques mainly relies on indirect measures such as test-retest repeatability assessments. In this study, we aim to compare and, thus, validate the respiratory motion vector fields obtained from the positron emission tomography (PET) images directly to the respiratory motion observed during four-dimensional cine-computed tomography (CT) by an expert observer.

Purpose: To investigate the accuracy of the motion correction employed in a software (FusionQuant) used for evaluation of F-NaF PET studies by comparing the respiratory motion of the coronary plaques observed in PET to the respiratory motion observed in 4D cine-CT images.

Methods: This study included 23 patients who undertook thoracic PET scans for the assessment of coronary plaques using F-sodium fluoride ( F-NaF). All patients underwent a 5-s cine-CT (4D-CT), a coronary CT angiography (CTA), and F-NaF PET. The 4D-CT and PET scan were reconstructed into 10 phases. Respiratory motion was estimated for the non-contrast visible coronary plaques using diffeomorphic registrations (PET) and compared to respiratory motion observed on 4D-CT. We report the PET motion vector fields obtained in the three principal axes in addition to the 3D motion. Statistical differences were examined using paired t-tests. Signal-to-noise ratios (SNR) are reported for the single-phase images (end-expiratory phase) and for the motion-corrected image-series (employing the motion vector fields extracted during the diffeomorphic registrations).

Results: In total, 19 coronary plaques were identified in 16 patients. No statistical differences were observed for the maximum respiratory motion observed in x, y, and the 3D motion fields (magnitude and direction) between the CT and PET (X direction: 4D CT = 2.5 ± 1.5 mm, PET = 2.4 ± 3.2 mm; Y direction: 4D CT = 2.3 ± 1.9 mm, PET = 0.7 ± 2.9 mm, 3D motion: 4D CT = 6.6 ± 3.1 mm, PET = 5.7 ± 2.6 mm, all p ≥ 0.05). Significant differences in respiratory motion were observed in the systems' Z direction: 4D CT = 4.9 ± 3.4 mm, PET = 2.3 ± 3.2 mm, p = 0.04. Significantly improved SNR is reported for the motion corrected images compared to the end-expiratory phase images (end-expiratory phase = 6.8±4.8, motion corrected = 12.2±4.5, p = 0.001).

Conclusion: Similar respiratory motion was observed in two directions and 3D for coronary plaques on 4D CT as detected by automatic respiratory motion correction of coronary PET using FusionQuant. The respiratory motion correction technique significantly improved the SNR in the images.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9742185PMC
http://dx.doi.org/10.1002/mp.15834DOI Listing

Publication Analysis

Top Keywords

respiratory motion
52
motion correction
24
coronary plaques
24
motion observed
24
motion
22
respiratory
13
motion vector
12
vector fields
12
pet
10
coronary
9

Similar Publications

Comparing the Robustness of Intensity-modulated Proton Therapy and Proton-arc Therapy Against Interplay Effects of 4D Robust-optimised Plans for Lung Stereotactic Body Radiotherapy.

Clin Oncol (R Coll Radiol)

January 2025

Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.

Aims: To assess the robustness of 4D-optimised IMPT and PAT plans against interplay effects in non-small cell lung cancer (NSCLC) patients with respiratory motion over 10 mm, and to provide insights into the use of proton-based stereotactic body radiotherapy (SBRT) for lung cancer with significant tumour movement.

Materials And Methods: Fourteen patients with early-stage NSCLC and tumour motion >10 mm were selected. Three hypofraction regimens were generated using 4D robust optimisation with the IMPT and PAT techniques.

View Article and Find Full Text PDF

Free-Breathing Respiratory Triggered High-Pitch Lung CT: Insights From Phantom and Patient Scans.

Invest Radiol

January 2025

From the Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (A. Schwarz, A. Simon, A.M.); Siemens Healthineers AG, Forchheim, Germany (A. Schwarz, C.H., J.D., A. Simon); Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany (F.K.W., S.G., M.S.); and Institut for Radiology, Pediatric and Neuroradiology, Helios Hospital, Schwerin, Germany (H.-J.R.).

Objective: Respiratory motion can affect image quality and thus affect the diagnostic accuracy of CT images by masking or mimicking relevant lung pathologies. CT examinations are often performed during deep inspiration and breath-hold to achieve optimal image quality. However, this can be challenging for certain patient groups, such as children, the elderly, or sedated patients.

View Article and Find Full Text PDF

Respiratory motion phantoms can be used for evaluation of CT imaging technologies such as motion artifact reduction algorithms and deformable image registration. However, current respiratory motion phantoms do not exhibit detailed lung tissue structures and thus do not provide a realistic testing environment. This paper presents PixelPrint, a method for 3D-printing deformable lung phantoms featuring highly realistic internal structures, suitable for a broad range of CT evaluations, optimizations, and research.

View Article and Find Full Text PDF

Purpose: This study aims to develop an accurate image registration framework for personalized respiratory motion modeling.

Methods: The proposed framework incorporates longitudinal data through a two-stage transfer learning approach. In the first stage, transfer learning is employed on longitudinal data collected from the same device.

View Article and Find Full Text PDF

Background: Dynamic chest radiography (DCR) is useful for detecting preoperative pleural adhesions, predicting operation time and blood loss, and determining the surgical approach. However, since DCR evaluations are subjective, an objective index was needed. Therefore, we focused on the low motion area (LMA) ratio derived from the objective data obtained through DCR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!