Kollidon® VA 64 and Soluplus® as modern polymeric carriers for amorphous solid dispersions.

Polim Med

Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Kraków, Poland.

Published: July 2022

As the number of new drug candidates that are poorly soluble in water grows, new technologies that enable the enhancement of their solubility are needed. This is the case with amorphous solid dispersions (ASDs) that, nowadays, not only ensure the solubility, but can also be used to control the release rate of poorly soluble drugs. However, this dosage form must overcome the major disadvantage of ASDs, which is limited stability upon storage. Thus, a thorough knowledge on polymeric carriers that can enhance drug solubility while ensuring stability in the amorphous form is necessary. In this review, the state of the art in the application of Kollidon® VA 64 (copovidone) and Soluplus® (graft copolymer of polyvinyl caprolactam-polyvinyl acetate and poly(ethylene glycol) (PEG)) in the manufacturing of ASDs over the last 20 years is presented. Apart from the classical methods, namely solvent evaporation or melting, more advanced technologies such as pulse combustion drying, high-speed electrospinning and single-step 3D printing are described. It has been shown that both the dissolution rate (in vitro) and enhancement in bioavailability (in vivo) regarding poorly soluble active ingredients of natural or synthetic origin are possible using these matrix-forming polymers.

Download full-text PDF

Source
http://dx.doi.org/10.17219/pim/150267DOI Listing

Publication Analysis

Top Keywords

polymeric carriers
8
amorphous solid
8
solid dispersions
8
kollidon® soluplus®
4
soluplus® modern
4
modern polymeric
4
carriers amorphous
4
dispersions number
4
number drug
4
drug candidates
4

Similar Publications

Design and Characterization of Novel Polymeric Hydrogels with Protein Carriers for Biomedical Use.

Int J Mol Sci

December 2024

Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawla II Av., 31-864 Krakow, Poland.

Hydrogels are three-dimensional polymeric matrices capable of absorbing significant amounts of water or biological fluids, making them promising candidates for biomedical applications such as drug delivery and wound healing. In this study, novel hydrogels were synthesized using a photopolymerization method and modified with cisplatin-loaded protein carriers, as well as natural extracts of nettle () and chamomile ( L.).

View Article and Find Full Text PDF

Due to the high mortality rate of ovarian cancer, there is a need to find novel strategies to improve current treatment modalities. Natural compounds offer great potential in this field but also require the careful design of systems for their delivery to cancer cells. Our study explored the anticancer effects of novel resveratrol (RSV)- and curcumin (CUR)-loaded core-shell nanoparticles in human ovarian cancer cells.

View Article and Find Full Text PDF

Amorphous solid dispersion (ASD) technology is often used as a promising strategy to improve the solubility of active pharmaceutical ingredients (APIs). ASDs allow APIs to be dispersed at the molecular level in a polymer carrier, destroying the crystalline structure of the APIs and, thanks to the polymer, providing long-term supersaturation in solution. However, stability issues are an obstacle to the development of new medications with ASD.

View Article and Find Full Text PDF

The grapevine industry is confronted with challenges such as plant stress from environmental factors and microbial infections, alongside the need for sustainable waste management practices. Natural polymers offer promising solutions to these issues due to their biocompatibility, biodegradability, and functional versatility. This review explores the dual role of natural polymers in enhancing the grapevine industry: as protective agents against various stressors and as carriers for the delivery of valuable compounds recovered from grapevine wastes.

View Article and Find Full Text PDF

Electrochemical polymerization of 3,4-ethylenedioxythiophene in the presence of water-soluble fullerene derivatives was investigated. The electronic structure, morphology, spectroelectrochemical, electrochemical properties and near-IR photoconductivity of composite films of poly(3,4-ethylenedioxythiophene) with fullerenes were studied for the first time. It was shown that fullerene with hydroxyl groups creates favorable conditions for the formation of PEDOT chains and more effectively compensates for the positive charges on the PEDOT chains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!