Functional molecules bearing polychlorinated moieties usually play versatile roles in organic synthesis and biochemistry. A copper-catalyzed multicomponent polychloro-carboalkynylation of alkenes presents an efficient and operationally simple approach for the synthesis of β-polychlorinated alkynes. Mechanistic experiments were conducted demonstrating that an generated copper acetylide complex was the real catalyst and reactive intermediate during the copper-catalytic cycle. And enantioselective exploration demonstrated potential application for the synthesis of chiral β-polychlorinated alkynes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.2c01755 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States.
Monoanionic, bidentate-auxiliary-directed, cobalt-catalyzed C-H bond functionalization has become a very useful tool in organic synthesis. A comprehensive investigation into isolated organometallic intermediates and their reactivity within the catalytic cycle is lacking. We report here mechanistic studies of cobalt-catalyzed, aminoquinoline-directed C(sp)-H bond functionalization.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
There has been a long search for a simple preparation of new cyclic analogues of ionophore antibiotics. We report a simple and general synthesis of three new cyclic derivatives of polyether ionophore, monensin A (MON). The application of the Huisgen 1,3-dipolar cycloaddition of azides and terminal alkynes to macrocyclization results in a concise, synthetic route to monensin lacton or lactam in only 4 steps.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sree Chitra Tirunal Institute for Medical Sciences and Technology, Bioceramics Division, Biomedical Technology Wing, 695011, Thiruvananthapuram, INDIA.
A collagen-inspired helical protein-mimic has been synthesized via topochemical polymerization of a designed tripeptide monomer. In the monomer crystal, molecules arrange in a head-to-tail manner, forming supramolecular helices. The azide and alkyne of adjacent molecules in the supramolecular helix are proximally preorganized in a ready-to-react arrangement.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
In this work, coixalkyne A (), a natural polynuclear calcium complex with a novel cross-shaped molecular architecture, was isolated from L. along with the undescribed analogue coixalkyne B (). Their structures were identified by means of NMR spectroscopy, ECD calculations, and single-crystal X-ray diffraction.
View Article and Find Full Text PDFOrg Lett
January 2025
Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
Transition-metal-catalyzed [2 + 2 + 2] annulation of alkynes is an efficient pathway for the synthesis of aromatic compounds. However, most of the established methods require noble metal catalysts. Herein, we report a copper-catalyzed intermolecular [2 + 2 + 2] annulation of diynes with alkynes through vinyl cation intermediates, enabling the atom-economical preparation of biologically important carbazole skeletons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!