Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanoparticle flexibility is an important parameter in determining cell uptake and tumor accumulation, thus modulating therapeutic efficiency in cancer treatment. Herein, we successfully prepared CuS-embedded human serum albumin hollow nanocapsules (denoted CuS/HSA) by a hard-core-assisted layer-by-layer coating approach. This approach afforded CuS/HSA hollow nanocapsules with controllable shell thickness, tunable flexibility, uniform size (272.9 nm), a large hollow cavity, peroxidase-like activity, excellent photothermal conversion ability, and a high tetra-(4-aminophenyl) porphyrin (TAPP) loading capacity (27.3 wt%). The peroxidase-like activity of the CuS nanoparticles enabled them to overcome tumor hypoxia and augment the sonodynamic therapeutic (SDT) effects and photothermal conversion ability for photothermal therapy (PTT). experiments showed that the CuS/HSA-TAPP hollow nanocapsules efficiently induced cancer cell apoptosis under US irradiation and cancer cell ablation under laser irradiation, thus facilitating synergistic SDT and PTT. Importantly, the flexibility of the CuS/HSA hollow nanocapsules resulted in significantly enhanced cellular internalization and a longer mean residence time (131.3 h) than their solid counterparts (21.0 h). In a breast tumor model, the flexible CuS/HSA hollow nanocapsules exhibited high tumor accumulation of up to 27.1%. experiments demonstrated that the flexible CuS/HSA-TAPP hollow nanocapsules effectively eliminated breast tumors the synergistic effect of SDT and PTT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2nr00258b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!