AI Article Synopsis

  • Photoreceptors rely on glucose from the choriocapillaris for vital processes like phototransduction and outer segment renewal; reduced glucose availability contributes to cell death in retinal degeneration and aging diseases.
  • Conditional deletion of the Slc2a1 gene, which encodes the GLUT1 glucose transporter, in retinal neurons and Müller glia leads to impaired outer segment growth and rod photoreceptor death, but not cone photoreceptors.
  • The research underscores the importance of glucose in maintaining the health and function of rod photoreceptors, as evidenced by decreased levels of rhodopsin and changes in outer segment length following the deletion of Slc2a1.

Article Abstract

Photoreceptors consume glucose supplied by the choriocapillaris to support phototransduction and outer segment (OS) renewal. Reduced glucose supply underlies photoreceptor cell death in inherited retinal degeneration and age-related retinal disease. We have previously shown that restricting glucose transport into the outer retina by conditional deletion of Slc2a1 encoding GLUT1 resulted in photoreceptor loss and impaired OS renewal. However, retinal neurons, glia, and the retinal pigment epithelium play specialized, synergistic roles in metabolite supply and exchange, and the cell-specific map of glucose uptake and utilization in the retina is incomplete. In these studies, we conditionally deleted Slc2a1 in a pan-retinal or rod-specific manner to better understand how glucose is utilized in the retina. Using non-invasive ocular imaging, electroretinography, and histochemical and biochemical analyses we show that genetic deletion of Slc2a1 from retinal neurons and Müller glia results in reduced OS growth and progressive rod but not cone photoreceptor cell death. Rhodopsin levels were severely decreased even at postnatal day 20 when OS length was relatively normal. Arrestin levels were not changed suggesting that glucose uptake is required to synthesize membrane glycoproteins. Rod-specific deletion of Slc2a1 resulted in similar changes in OS length and rod photoreceptor cell death. These studies demonstrate that glucose is an essential carbon source for rod photoreceptor cell OS maintenance and viability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9438481PMC
http://dx.doi.org/10.1096/fj.202200369RDOI Listing

Publication Analysis

Top Keywords

photoreceptor cell
16
glucose uptake
12
rod photoreceptor
12
cell death
12
deletion slc2a1
12
glucose
8
outer segment
8
segment renewal
8
retinal neurons
8
photoreceptor
6

Similar Publications

Background: Effect of dynamic lighting on sleep were studied since 1980's. Traditional light sources were used due to lack of advancement in technology and also researchers assumed illuminance as cause of melatonin suppression. This led researchers to use high illuminance to suppress melatonin at day time.

View Article and Find Full Text PDF

Technology and Dementia Preconference.

Alzheimers Dement

December 2024

Yuan Ze University, Taoyuan CIty, Taoyuan, Taiwan.

Background: Effect of dynamic lighting on sleep were studied since 1980's. Traditional light sources were used due to lack of advancement in technology and also researchers assumed illuminance as cause of melatonin suppression. This led researchers to use high illuminance to suppress melatonin at day time.

View Article and Find Full Text PDF

Modeling sacsin depletion in Danio Rerio offers new insight on retinal defects in ARSACS.

Neurobiol Dis

January 2025

Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy. Electronic address:

Biallelic mutations in the SACS gene, encoding sacsin, cause early-onset autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS), a neurodegenerative disease also characterized by unique and poorly understood retinal abnormalities. While two murine models replicate the phenotypic and neuronal features observed in patients, no retinal phenotype has been described so far. In a zebrafish knock-out strain that faithfully mirrors the main aspects of ARSACS, we observed impaired visual function due to photoreceptor degeneration, likely caused by cell cycle defects in progenitor cells.

View Article and Find Full Text PDF

Active learning of enhancers and silencers in the developing neural retina.

Cell Syst

December 2024

The Edison Family Center for Genome Sciences & Systems Biology, Saint Louis, MO 63110, USA; Department of Genetics, Saint Louis, MO 63110, USA. Electronic address:

Deep learning is a promising strategy for modeling cis-regulatory elements. However, models trained on genomic sequences often fail to explain why the same transcription factor can activate or repress transcription in different contexts. To address this limitation, we developed an active learning approach to train models that distinguish between enhancers and silencers composed of binding sites for the photoreceptor transcription factor cone-rod homeobox (CRX).

View Article and Find Full Text PDF

Purpose: Oxidative phosphorylation (OXPHOS) is an aerobic metabolic mechanism, and its dysfunction plays an important role in the pathological changes of ischemic diseases. However, systematic studies on the occurrence of retinal detachment (RD) are lacking.

Methods: Single-cell RNA sequencing (scRNA-seq) of the human retina was performed to detect the metabolic changes of various retinal cells after RD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!