Copper(II) coordination by bis(cyclohexanone)oxalyldihydrazone (also known as cuprizone), resulting in the formation of an intensely coloured blue complex, was first reported over 70 years ago. The cuprizone reaction has been employed in colourimetric tests for the presence of trace levels of copper. Cuprizone administration in C57BL/6 mice also leads to demyelination over time - a consequence that appears to be due to copper dyshomeostasis - and this has led to use of cuprizone as the leading method for toxicant-induced generation of an animal model of demyelination since its first use in the 1960s. Despite broad interest in cuprizone and its ability to bind copper there have been relatively few studies to structurally characterize the copper coordination properties of this ligand. In the absence of an aqueous medium, such as neat alcohol, copper and cuprizone exclusively form an amorphous green precipitate. Under aqueous conditions, where a large excess of cuprizone (relative to copper) is present, the blue complex that is synonymous with copper-cuprizone coordination is predominantly formed. The blue and green copper-cuprizone products demonstrate poor solubility and present challenges for conventional structure characterization methods, such as X-ray crystallography or nuclear magnetic resonance spectroscopy. By combining mass spectrometry, X-ray absorption spectroscopy, computational chemistry, and other techniques, a self-consistent picture of the copper coordination structures of the blue and green complexes is revealed - confirming that the blue complex is in the Cu(III) state, containing two hydrolyzed cuprizone ligands per metal centre, while the green complex represents an extended oligomeric complex, comprised of repeating Cu(II) centres that lie 4.8 Å apart and are bridged by unhydrolyzed cuprizone donors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2dt01475k | DOI Listing |
Mikrochim Acta
January 2025
Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, 510665, People's Republic of China.
A simple and rapid colorimetric detection strategy, based on hydrogen bond identification of 6-thioguanine (6-TG) functionalized Au nanoparticles (AuNPs), is proposed for highly selective and sensitive determination of kanamycin (KA). In this strategy, the hydrogen bond interaction between 6-TG and kanamycin induces AuNPs to agglomerate, with a consequent color change of AuNPs from wine red to purple or even blue. The kanamycin concentrations can be quantified by employing UV-vis spectrophotometer.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 119074, Singapore.
The emerging combination of chemotherapy and radionuclide therapy has been actively investigated to overcome the limitations of monotherapy and augment therapeutic efficacy. However, it remains a challenge to design a single delivery vehicle that can incorporate chemotherapeutics and radionuclides into a compact structure. Here, a chelator DOTA- or NOTA-modified Evans blue conjugated camptothecin molecule (EB-CPT) nanoprodrug was synthesized, which could self-assemble into nanoparticles due to its inherent amphiphilicity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al Ahsa, 31982, Saudi Arabia.
The spent black tea extract was utilized in order to synthesize the spent black tea silver nanoparticles (SBT-AgNPs). Various parameters were tested to yield the best production of SBT-AgNPs. The characterization was conducted by X-Ray diffraction, Scanning electron microscopy, Zeta potential and energy dispersive X-ray (EDX).
View Article and Find Full Text PDFJ Gen Appl Microbiol
January 2025
Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo.
We previously constructed an Escherichia coli strain expressing 16 nitrogen fixation (nif) and 2 nif-related genes from Azotobacter vinelandii and improved nitrogenase activity to some extent by enhancing NifH-related functions. In the present study, we analyzed the formation of dinitrogenase, a heterotetrameric NifDK, produced in E. coli, using gel-filtration chromatography and blue native PAGE to gain insight into further increases in nitrogenase activity.
View Article and Find Full Text PDFChemistry
January 2025
Umeå Universitet: Umea Universitet, Department of Chemistry, Department of Chemistry, 90187, Umeå, SWEDEN.
Chemically induced dimerization/proximity (CID/CIP) systems controlled by chemical dimerizers (also known as molecular glues) provide valuable means for understanding and manipulating complex, dynamic biological systems. In this study, we present the development of versatile chemo-optogenetic systems utilizing azobenzene-based photoswitchable molecular glues (sMGs) for reversible protein dimerization controlled by visible light. These systems allow multiple cycles of light-induced dimerization, overcoming the limitations of irreversible photolysis in previous systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!