Breathable and Stretchable Dressings for Accelerating Healing of Infected Wounds.

Adv Healthc Mater

Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, China.

Published: September 2022

Multidrug-resistant (MDR) bacteria-infected wounds are challenging issues that threaten human health. Herein, L-thioproline (T) and Boc-capped L-thioproline (BT)-decorated gold nanoparticles (TBT-GNPs) with potent antibacterial activity against MDR bacteria are reported. The TBT-GNPs are composited with bacterial cellulose to form wound dressings which show excellent antimicrobial performance both in vitro and in vivo. Moreover, this dressing is both breathable and stretchable which is favorable for gas exchange to accelerate the wound healing. This work is insightful for developing multifunctional dressings to satisfy the clinical requirements.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202201053DOI Listing

Publication Analysis

Top Keywords

breathable stretchable
8
stretchable dressings
4
dressings accelerating
4
accelerating healing
4
healing infected
4
infected wounds
4
wounds multidrug-resistant
4
multidrug-resistant mdr
4
mdr bacteria-infected
4
bacteria-infected wounds
4

Similar Publications

Human-machine interaction has emerged as a revolutionary and transformative technology, bridging the gap between human and machine. Gesture recognition, capitalizing on the inherent dexterity of human hands, plays a crucial role in human-machine interaction. However, existing systems often struggle to meet user expectations in terms of comfort, wearability, and seamless daily integration.

View Article and Find Full Text PDF

Skin-like bioelectronics offer a transformative technological frontier, catering to continuous and real-time yet highly imperceptible and socially discreet digital healthcare. The key technological breakthrough enabling these innovations stems from advancements in novel material synthesis, with unparalleled possibilities such as conformability, miniature footprint, and elasticity. However, existing solutions still lack desirable properties like self-adhesivity, breathability, biodegradability, transparency, and fail to offer a streamlined and scalable fabrication process.

View Article and Find Full Text PDF

Flexible, stretchable multifunctional silver nanoparticles-decorated cotton textile based on amyloid-like protein aggregation for electrothermal and photothermal dual-driven wearable heater.

Int J Biol Macromol

December 2024

State Key Laboratory for New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China. Electronic address:

The design of multifunctional, high-performance wearable heaters utilizing textile substrates has garnered increasing attention, particularly in the development of body temperature and health monitoring devices. However, fabricating these multifunctional wearable heaters while simultaneously ensuring flexibility, air permeability, Joule heating performance, electromagnetic interference (EMI) shielding and antibacterial properties remains a significant challenge. This study utilizes phase transition lysozyme (PTL) film-mediated electroless deposition (ELD) technology to deposit silver nanoparticles (Ag NPs) on the cotton fabrics surface in a mild aqueous solution at room temperature, thereby constructing a wearable heater with long-term stability, high conductivity, and exceptional photothermal properties.

View Article and Find Full Text PDF

Fishing net-inspired PVA-chitosan-CNT hydrogels with high stretchability, sensitivity, and environmentally stability for textile strain sensors.

Int J Biol Macromol

December 2024

School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Province Engineering Technology Research Center of MEMS Manufacturing and Applications, Zhengzhou University, Zhengzhou 450001, China; Industrial Technology Research Institute, Zhengzhou University, Zhengzhou 450001, China. Electronic address:

Soft electronic products are being extensively investigated in diverse applications including sensors and devices, due to their superior softness, responsiveness, and biocompatibility. One-dimensional (1-D) fiber electronic devices are recognized for their lightweight, wearable, and stretchable qualities, thus emerging as critical constituents for seamless integration with the human body and attire, exhibiting great potential in wearable applications. However, wearable conductive hydrogel fibers usually face challenges in combining stretchability and excellent stability, notably in high-temperature environment.

View Article and Find Full Text PDF

Electronic textiles with remarkable breathability, lightweight, and comfort hold great potential in wearable technologies and smart human-machine interfaces. Ionic capacitive sensors, leveraging the advantages of the electric double layer, offer higher sensitivity compared to traditional capacitive sensors. Current research on wearable ion-capacitive sensors has focused mainly on two-dimensional (2D) or three-dimensional (3D) device architectures, which show substantial challenges for direct integration with textiles and compromise their wearing experience on conformability and permeability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!