Background: ATP-binding cassette membrane transporter G2 (ABCG2) gene is one of transporter family and well characterized for their association with chemoresistance. Promoter methylation is a mechanism for regulation of gene expression. O6-Methyl guanine DNA methyl transferase (MGMT) gene plays a fundamental role in DNA repair. MGMT has the ability to remove alkyl adducts from DNA at the O6 position of guanine. Alkylating agents exert their function through adding these alkyls adducts to DNA leading to cell death unless it is repaired by MGMT. MGMT promoter was found to be methylated in several malignancies. The aim of the present work is to study the relation of MGMT and ABCG2 promoter methylation status in advanced breast cancer patients to response to cyclophosphamide-doxorubicin (AC) based therapeutic regime.

Methods: This retrospective study included Forty-two female patients with advanced breast cancer assessed before receiving chemotherapy and after the completion of regimens. They were grouped into responders and non-responders according to RECIST criteria. Methylation analysis of MGMT and ABCG2 genes were performed on breast cancer tissues.

Results: MGMT promoter was methylated in 40.5% of the cases. ABCG2 promoter was methylated in 14.3% of cases. There was no statistically significant association between MGMT and ABCG2 promoter methylation status and clinicopathological parameters. There was statistically significant association between methylation status of both promoters and response to AC when followed by Taxane.

Conclusion: Methylation of MGMT and ABCG2 promoters combined could be a potential predictive factor for response to cyclophosphamide-doxorubicin based therapeutic regime.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9208568PMC
http://dx.doi.org/10.52547/rbmb.11.1.20DOI Listing

Publication Analysis

Top Keywords

mgmt abcg2
16
advanced breast
12
promoter methylation
12
promoter methylated
12
abcg2 promoter
12
methylation status
12
breast cancer
12
mgmt
9
atp-binding cassette
8
cassette membrane
8

Similar Publications

iPSC-Derived Glioblastoma Cells Have Enhanced Stemness Wnt/β-Catenin Activity Which Is Negatively Regulated by Wnt Antagonist sFRP4.

Cancers (Basel)

July 2023

Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India.

Growing evidence indicates that cancer stem cells (CSCs) endow the tumor with stem-like properties. Recently, induced pluripotent stem cells (iPSCs) have gained increased attention because of their easy derivation and availability and their potential to differentiate into any cell type. A CSC model derived from iPSCs of human origin would help understand the driving force of tumor initiation and early progression.

View Article and Find Full Text PDF

Background: ATP-binding cassette membrane transporter G2 (ABCG2) gene is one of transporter family and well characterized for their association with chemoresistance. Promoter methylation is a mechanism for regulation of gene expression. O6-Methyl guanine DNA methyl transferase (MGMT) gene plays a fundamental role in DNA repair.

View Article and Find Full Text PDF

Glioblastoma (GBM), the most commonly occurring primary tumor arising within the central nervous system, is characterized by high invasiveness and poor prognosis. In spite of the improvement in surgical techniques, along with the administration of chemo- and radiation therapy and the incessant investigation in search of prospective therapeutic targets, the local recurrence that frequently occurs within the peritumoral brain tissue makes GBM the most malignant and terminal type of astrocytoma. In the current study, we investigated both GBM and peritumoral tissues obtained from 55 hospitalized patients and the expression of three molecules involved in the onset of resistance/unresponsiveness to chemotherapy: O6-methylguanine methyltransferase (MGMT), breast cancer resistance protein (BCRP1), and A2B5.

View Article and Find Full Text PDF

Overcoming temozolomide (TMZ) resistance in glioma cancer cells remains a major challenge to the effective treatment of the disease. Increasing TMZ efficacy for patients with glioblastoma (GBM) is urgently needed because TMZ treatment is the standard chemotherapy protocol for adult patients with glioblastoma. O-methylguanine-DNA-methyltransferase (MGMT) overexpression is associated with TMZ resistance, and low MGMT is a positive response marker for TMZ therapy.

View Article and Find Full Text PDF

The study was to evaluate the effect of ten-eleven translocation 1 (TET1) regulating o6-methylguanine-DNA methyltransferase (MGMT) in chemotherapy resistance of oral squamous cell carcinoma (OSCC) stem cells. OSCC stem cells were divided into the blank, negative control (NC), TET1-siRNA, TET1-siRNA + MGMT-OE, and MGMT-OE groups. Methylation-specific polymerase chain reaction (MSP), qRT-PCR and Western blotting were conducted to detect the methylation status of MGMT, expressions of TET1, MGMT, ABCG2, and Oct-4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!