Simple, rapid, and visual electrochemiluminescence sensor for on-site catechol analysis.

RSC Adv

Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China.

Published: June 2022

Environmental pollution caused by aromatic compounds such as catechol (Cat) has become a major issue for human health. However, there is no simple, rapid, and low-cost method for on-site monitoring of Cat. Here, based on ECL quenching mechanism, we develop a simple, rapid and visual mesoporous silica (MSNs)-electrochemiluminescence (ECL) sensor for on-site monitoring of Cat. The mechanism of ECL quenching is due to the interaction between Cat and Ru(bpy) and the interactions between the oxidation products of Cat and DBAE. MSNs films with ordered perpendicular mesopore channels exhibit an amplification effect of ECL intensity due to the negatively charged pore channel. There is a good linear relationship between ECL intensity and Cat concentration in the range of 10 ∼ 1000 μM with the limit of detection (LOD) of 9.518 μM ( = 0.99). The on-site sensor is promising to offer new opportunities for pharmaceuticals analysis, on-site monitoring, and exposure risk assessment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189704PMC
http://dx.doi.org/10.1039/d2ra03067eDOI Listing

Publication Analysis

Top Keywords

simple rapid
12
on-site monitoring
12
rapid visual
8
sensor on-site
8
monitoring cat
8
ecl quenching
8
ecl intensity
8
cat
6
on-site
5
ecl
5

Similar Publications

Detection and quantification of disease-related biomarkers in wastewater samples, denominated Wastewater-based Surveillance (WBS), has proven a valuable strategy for studying the prevalence of infectious diseases within populations in a time- and resource-efficient manner, as wastewater samples are representative of all cases within the catchment area, whether they are clinically reported or not. However, analysis and interpretation of WBS datasets for decision-making during public health emergencies, such as the COVID-19 pandemic, remains an area of opportunity. In this article, a database obtained from wastewater sampling at wastewater treatment plants (WWTPs) and university campuses in Monterrey and Mexico City between 2021 and 2022 was used to train simple clustering- and regression-based risk assessment models to allow for informed prevention and control measures in high-affluence facilities, even if working with low-dimensionality datasets and a limited number of observations.

View Article and Find Full Text PDF

Aims: The screening and diagnosis of dengue virus infection play a crucial role in controlling the epidemic of dengue fever, highlighting the urgent need for a highly sensitive, simple, and rapid laboratory testing method. This study aims to assess the clinical performance of MAGLUMI Denv NS1 in detecting dengue virus NS1 antigen.

Methods: A retrospective study was conducted to assess the sensitivity and specificity of MAGLUMI Denv NS1 using residual samples.

View Article and Find Full Text PDF

A Simple Machine Learning-Based Quantitative Structure-Activity Relationship Model for Predicting pIC Inhibition Values of FLT3 Tyrosine Kinase.

Pharmaceuticals (Basel)

January 2025

Centro de Química Médica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile.

Acute myeloid leukemia (AML) presents significant therapeutic challenges, particularly in cases driven by mutations in the FLT3 tyrosine kinase. This study aimed to develop a robust and user-friendly machine learning-based quantitative structure-activity relationship (QSAR) model to predict the inhibitory potency (pIC values) of FLT3 inhibitors, addressing the limitations of previous models in dataset size, diversity, and predictive accuracy. Using a dataset which was 14 times larger than those employed in prior studies (1350 compounds with 1269 molecular descriptors), we trained a random forest regressor, chosen due to its superior predictive performance and resistance to overfitting.

View Article and Find Full Text PDF

A Label-Free Colorimetric Aptasensor for Flavokavain B Detection.

Sensors (Basel)

January 2025

Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.

Flavokavain B (FKB), a hepatotoxic chalcone from (kava), has raised safety concerns due to its role in disrupting redox homeostasis and inducing apoptosis in hepatocytes. Conventional chromatographic methods for FKB detection, while sensitive, are costly and impractical for field applications. In this work, DNA aptamers were selected using the library-immobilized method and high-throughput sequencing.

View Article and Find Full Text PDF

Diamond-wire sawing silicon waste (DSSW) derived from the silicon wafer sawing process may lead to resource waste and environmental issues if not properly utilized. This paper propounds a simple technique aimed at enhancing the efficiency of hydrogen production from DSSW. The hydrolysis reaction is found to become faster when DSSW is ground.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!