Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The use of face masks in public places has emerged as one of the most effective non-pharmaceutical measures to lower the spread of COVID-19 infection. This has led to the development of several detection systems for identifying people who do not wear a face mask. However, not all face masks or coverings are equally effective in preventing virus transmission or illness caused by viruses and therefore, it appears important for those systems to incorporate the ability to distinguish between the different types of face masks. This paper implements four pre-trained deep transfer learning models (NasNetMobile, MobileNetv2, ResNet101v2, and ResNet152v2) to classify images based on the type of face mask (KN95, N95, surgical and cloth) worn by people. Experimental results indicate that the deep residual networks (ResNet101v2 and ResNet152v2) provide the best performance with the highest accuracy and the lowest loss.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222491 | PMC |
http://dx.doi.org/10.1016/j.asoc.2022.109207 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!