A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multi-attention representation network partial domain adaptation for COVID-19 diagnosis. | LitMetric

Multi-attention representation network partial domain adaptation for COVID-19 diagnosis.

Appl Soft Comput

School of Mechanical Engineering, Xiangtan University, Xiangtan, Hunan 411105, China.

Published: August 2022

The outbreak of COVID-19 threatens the safety of all human beings. Rapid and accurate diagnosis of patients is the effective way to prevent the rapid spread of COVID-19. The current computer-aided diagnosis of COVID-19 requires extensive labeled data for training, and this undoubtedly increases human and material resources costs. Domain adaptation (DA), an existing promising approach, can transfer knowledge from rich labeled pneumonia datasets for COVID-19 diagnosis and classification. However, due to the differences in feature distribution and task semantic between pneumonia and COVID-19, negative transfer may reduce the performance in diagnosis COVID-19 and pneumonia. Furthermore, the training data is usually mixed with many noise samples in practice, and this also poses new challenges for domain adaptation. As a kind of domain adaptation, partial domain adaptation (PDA) can well avoid outlier samples in the source domain and achieve good classification performance in the target domain. However, the existing PDA methods all learn a single feature representation; this can only learn local information about the inputs and ignore other important information in the samples. Therefore multi-attention representation network partial domain adaptation (MARPDA) is proposed in this paper to overcome the above shortcomings of PDA. In MARPDA, we construct the multiple representation networks with attention to acquire the image representation and effectively learn knowledge from different feature spaces. We design the sample-weighted strategy to achieve partial data transfer and address the negative transfer of noise data during training. MARPDA adapts to complex application scenarios and learns fine-grained features of the image from multiple representations. We apply the model to classify pneumonia and COVID-19 respectively, and evaluate it in qualitative and quantitative manners. The experimental results show that our classification accuracy is higher than that of the existing state-of-the-art methods. The stability and reliability of the proposed method are validated by the confusion matrix and the performance curves experiments. In summary, our method has better performance for diagnosis COVID-19 compared to the existing state-of-the-art methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222222PMC
http://dx.doi.org/10.1016/j.asoc.2022.109205DOI Listing

Publication Analysis

Top Keywords

domain adaptation
24
partial domain
12
diagnosis covid-19
12
covid-19
9
multi-attention representation
8
representation network
8
network partial
8
domain
8
covid-19 diagnosis
8
data training
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!