Objective: Preimplantation Genetic Testing - Aneuploidy (PGT-A) for embryo selection has undergone significant advancements in the last 2 decades and yet many studies still fail to demonstrate any clinical benefits over traditional embryo morphology selection (Mo-S). To understand this conundrum, we performed a multi-center clinical study of PGT-A patients, where Mo-S and euploid selection (Eu-S) outcomes were directly compared.

Method: All suitable blastocysts were biopsied and analyzed for chromosome copy number. Outcomes (positive beta hCG, implantation, ongoing pregnancy, and live birth rates) for Eu-S were compared to Mo-S using single embryo transfers.

Results: Compared to Eu-S embryos, Mo-S embryos resulted in significant reduction of outcomes for positive beta hCG (p = 0.0005), implantation (p = 0.0008), ongoing pregnancy (p = 0.0046), livebirth (p = 0.0112), babies per transfer (p = 0.0112), and babies per embryo transferred (p = 0.0112). Morphology selection resulted in patients of all age groups having non-euploid embryos chosen for transfer. Post-hoc evaluation of individual clinic performances showed variable transfer outcomes that could potentially confound the true benefits of PGT-A.

Conclusion: Embryo chromosome status is central to improved embryo transfer outcomes and sole reliance on current morphology-based selection practices, without Eu-S, will always compromise outcomes. Often overlooked but a major effector of successful PGT-A outcomes are individual clinic performances.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pd.6199DOI Listing

Publication Analysis

Top Keywords

morphology selection
8
outcomes positive
8
positive beta
8
beta hcg
8
ongoing pregnancy
8
p = 00112 babies
8
individual clinic
8
clinic performances
8
transfer outcomes
8
outcomes
7

Similar Publications

LAG3 plays a regulatory role in immunity and emerged as an inhibitory immune checkpoint molecule comparable to PD-L1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. We generated 3D cancer cultures as a model to identify novel molecular biomarkers for the selection of patients suitable for α-LAG3 treatment and simultaneously the possibility to perform an early diagnosis due to its higher presence in breast cancer, also to achieve a theragnostic approach. Our data confirm the extreme dysregulation of LAG3 in breast cancer with significantly higher expression in tumor tissue specimens, compared to non-cancerous tissue controls.

View Article and Find Full Text PDF

MXene-based composite photocatalysts for efficient degradation of antibiotics in wastewater.

Sci Rep

December 2024

Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.

MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.

View Article and Find Full Text PDF

This study aimed to compare computed tomography (CT) findings between basaloid lung squamous cell carcinoma (SCC) and non-basaloid SCC. From July 2003 to April 2021, 39 patients with surgically proven basaloid SCC were identified. For comparison, 161 patients with surgically proven non-basaloid SCC from June 2018 to January 2019 were selected consecutively.

View Article and Find Full Text PDF

To evaluate the predictive utility of N6-methyladenosine (m6A)-associated long non-coding RNAs (lncRNAs) for the prognosis and immunotherapy response in papillary renal cell carcinoma (pRCC). Transcriptomic data of pRCC samples were extracted from the TCGA database. The m6A-related lncRNAs were identified by Pearson correlation analysis.

View Article and Find Full Text PDF

In recent years, immune checkpoint inhibitors (ICIs) has emerged as a fundamental component of the standard treatment regimen for patients with head and neck squamous cell carcinoma (HNSCC). However, accurately predicting the treatment effectiveness of ICIs for patients at the same TNM stage remains a challenge. In this study, we first combined multi-omics data (mRNA, lncRNA, miRNA, DNA methylation, and somatic mutations) and 10 clustering algorithms, successfully identifying two distinct cancer subtypes (CSs) (CS1 and CS2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!