Single-cell analysis reveals immune cellular components in odontogenic keratocysts.

Oral Dis

The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.

Published: November 2023

Objectives: Various types of cells comprising a complex and diverse cell population are required for the biological activities of odontogenic keratocyst (OKC). Immune and non-immune cells collaborate via cytokine- or chemokine-mediated communication and direct cell-cell interactions. This study aimed to characterize the immune ecosystem and understand the potential chemotactic role of OKC fibroblasts in immune cell migration.

Materials And Methods: Mass cytometry of 41 markers was employed for the classification of OKC cells from six OKC samples. Immunofluorescence staining and single-cell RNA sequencing (GSE176351) were used for the detection of fibroblast subpopulations. Enzyme-linked immunosorbent assay and immunofluorescence staining were employed for chemokine detection in hypoxia- and/or HIF-1α inhibitor-treated OKC fibroblasts and tissues. Chemotaxis assay was employed to determine the chemotactic effect of fibroblasts via co-culture with peripheral blood mononuclear cells. A cell communication network was constructed based on the single-cell RNA sequencing data.

Results: The characterization of the immune cell types of OKC evidenced the enrichment of macrophages, neutrophils and B cells. The majority (41.5%) of fibroblast subsets consisted of chemokine ligand-enriched myofibroblasts. The activation of the HIF-1α signaling pathway in fibroblasts was associated with chemokine release. The chemokines released by OKC fibroblasts remarkably promoted the migration of peripheral blood mononuclear cells in the co-culture system. Close interactions between myofibroblasts and immune cells were validated by cell-cell interaction analysis. Increased RANKL expression was detected in OKC fibroblasts in the co-culture system with peripheral blood mononuclear cells.

Conclusions: Our results provided deep insights into the immune ecosystem and highlighted the potential chemotactic effects of chemokine-enriched myofibroblasts within OKCs. The close interaction between immune cells and fibroblasts demonstrated in this study may be responsible for the osteoclastogenic effects of OKC fibroblasts.

Download full-text PDF

Source
http://dx.doi.org/10.1111/odi.14293DOI Listing

Publication Analysis

Top Keywords

okc fibroblasts
20
peripheral blood
12
blood mononuclear
12
okc
9
immune
8
cells
8
immune ecosystem
8
potential chemotactic
8
fibroblasts
8
immune cell
8

Similar Publications

Background: Plant-derived compounds have chemopreventive properties to be used as alternative medicine. Pericarp of Mangosteen (Garcinia mangostana Linn.), a tropical fruit in Southeast Asia contains a phytochemical α-mangostin (α-MG) that demonstrates potent anticancer effects against various types of cancer.

View Article and Find Full Text PDF

Background: Odontogenic lesions constitute a heterogeneous group of lesions. CLIC4 protein regulates different cellular processes, including epithelial-mesenchymal transition and fibroblast-myofibroblast transdifferentiation. This study analyzed CLIC4, E-cadherin, Vimentin, and α-SMA immunoexpression in epithelial odontogenic lesions that exhibit different biological behavior.

View Article and Find Full Text PDF

Immunohistochemical expression of SPARC in odontogenic keratocysts: a comparative study with other odontogenic cysts.

BMC Oral Health

February 2024

Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Mahidol University, 6 Yothi Street, Ratchathewi, Bangkok, 10400, Thailand.

Background: Secreted protein acidic and rich in cysteine (SPARC) has been shown to modulate aggressive behavior in several benign and malignant tumors. Little is known about SPARC expression in odontogenic keratocyst (OKC), an odontogenic cyst with an aggressive nature. To the best of our knowledge, only one study has been investigated the expression of this protein in OKCs.

View Article and Find Full Text PDF

Background: Odontogenic keratocysts (OKCs) are odontogenic jaw lesions that cause destruction and dysfunction of the jawbone. OKCs can be sporadic or associated with nevoid basic cell carcinoma syndrome (NBCCS). However, the factors that initiate OKCs and the mechanism of cyst formation remain unclear.

View Article and Find Full Text PDF

Fibroblast Programmed Cell Death Ligand 1 Promotes Osteoclastogenesis in Odontogenic Keratocysts.

Am J Pathol

March 2023

The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China. Electronic address:

Local aggressive growth of odontogenic keratocysts (OKCs) can cause serious bone destruction, even resulting in pathologic fractures of the mandible. The mechanism of osteoclastogenesis in OKCs was explored by investigating the role of programmed cell death ligand 1 (PD-L1), a key immune checkpoint, in OKCs and its relationship with the M2 isoform of pyruvate kinase (PKM2), a key enzyme of glycolysis. The data from immunohistochemistry, real-time quantitative PCR, Western blot, and flow cytometry indicated that the expression level of PD-L1 was significantly increased in the stroma and fibroblasts of OKCs (OKC-Fs) when compared with oral mucosa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!