The application of organic amendments to contaminated soils is a remediation method to regulate metal(loid) leaching to waters and uptake to crops. Here, wood-derived biochar and/or green waste compost was amended to a Zn-rich agricultural soil (~ 450 mg kg total Zn, derived from legacy sludge application). A pot experiment grew barley and pea crops in amended soil for 100 days, simultaneously measuring Zn, pH, and dissolved organic carbon (DOC) in pore waters and Zn uptake to plants. An assessment was made of leaching of Zn via a linked column test that recirculated soil leachates to amendments multiple times to chart the confounding impacts of pH and DOC on Zn mobility. Concentrations of Zn in pore waters in the pot test were reduced from 2 mg l in soil without amendment to 1 mg l following the addition of 5% (vol.) biochar and compost, which was reduced further (0.5 mg l) in the presence of crops. DOC appeared largely unaffected by soil amendment when mixed into soil, though was universally increased by the presence of the barley crop, whilst pH was variable (pH 4-6) and not clearly correlated with any intervention. Barley head mass was significantly increased after 5% biochar and both doses of compost amendment. Barley Zn content was maintained or enhanced by all soil amendments. The leaching column test revealed that biochar raised pH above that of the soil and compost amendment. Zn leachate concentrations were also reduced from after biochar amendment. Notably, compost resulted in net mobilisation of Zn from soil. This study demonstrates that the addition of biochar and compost to a Zn-rich agricultural soil was able to reduce pore water Zn considerably, especially in the presence of a barley crop. Compared to compost, biochar was the more efficient sorbent of Zn.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-21744-3 | DOI Listing |
Sci Rep
January 2025
Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India.
Magnesium (Mg) an essential plant nutrient is widespread deficient in the acidic soils of Nilgiris of Tamil nadu, India. The vegetable yield and quality is especially affected due to deficiency of nutrients like Mg. This study investigates soil characteristics and bacterial diversity in the Nilgiris district of Tamil Nadu, India, with respect to Mg deficiency.
View Article and Find Full Text PDFSci Rep
January 2025
Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, College of Biology and Agricultural Resources, Hubei Zhongke Research Institute of Industrial Technology, Huanggang Normal University, Huanggang, 438000, Hubei, China.
Yutangba, situated in Enshi City, Hubei Province, is globally noted for its high selenium (Se) content. Soil invertebrates are essential to the functionality and services of terrestrial ecosystems, yet their community composition in this region remains under-explored. This study utilized environmental DNA metabarcoding to investigate the interrelations among environmental factors, soil invertebrate diversity, and community characteristics concerning soil Se content, pH, and moisture content in the region.
View Article and Find Full Text PDFMicrob Ecol
January 2025
Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, León, Guanajuato, México.
Mezcal, a traditional Mexican alcoholic beverage, has been a vital source of livelihood for indigenous and rural communities for centuries. However, increasing international demand is exerting pressure on natural resources and encouraging intensive agricultural practices. This study investigates the impact of management practices (wild, traditional, and conventional) and environmental factors on the microbial communities associated with Agave angustifolia, a key species in mezcal production.
View Article and Find Full Text PDFNature
January 2025
Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
Soil alkalinization and global warming are predicted to pose major challenges to agriculture in the future, as they continue to accelerate, markedly reducing global arable land and crop yields. Therefore, strategies for future agriculture are needed to further improve globally cultivated, relatively high-yielding Green Revolution varieties (GRVs) derived from the SEMIDWARF 1 (SD1) gene. Here we propose that precise regulation of the phytohormone gibberellin (GA) to optimal levels is the key to not only confer alkali-thermal tolerance to GRVs, but also to further enhance their yield.
View Article and Find Full Text PDFNature
January 2025
School of Life Sciences, Hebei University, Baoding, China.
Extreme droughts generally decrease productivity in grassland ecosystems with negative consequences for nature's contribution to people. The extent to which this negative effect varies among grassland types and over time in response to multi-year extreme drought remains unclear. Here, using a coordinated distributed experiment that simulated four years of growing-season drought (around 66% rainfall reduction), we compared drought sensitivity within and among six representative grasslands spanning broad precipitation gradients in each of Eurasia and North America-two of the Northern Hemisphere's largest grass-dominated regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!