Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Many ectomycorrhizal (ECM) fungi produce commercially valuable edible sporocarps. However, the effects of nitrogen (N) application on ECM fungal sporocarp formation remain poorly understood. In this study, we investigated the effect of application of various N concentrations (0, 5, 25, 50, 100, and 200 mg/L) on the growth of Laccaria japonica mycelia in vitro for 1 month. The results showed that L. japonica mycelial biomass was highest in the 50 mg/L treatment and was significantly inhibited at N concentrations higher than 200 mg/L. Next, we investigated the effects of N application on mycorrhizal colonization and sporocarp formation in L. japonica colonizing Pinus densiflora seedlings in pots. The seedlings were watered with nutrient solutions containing 0, 5, 25, 50, or 100 mg N/L. The biomass, photosynthetic rate, and mycorrhizal colonization rates of the seedlings were measured at 45 days (first appearance of primordia), 65 days (sporocarp appearance on the substrate surface), and 4 months after seedlings were transplanted. The numbers of primordia and sporocarps were recorded during the experimental period. Total carbon (C) and N content were determined in seedlings at 4 months after transplantation, and in L. japonica sporocarps. Both mycelial growth and sporocarp production reached their maximum at an N application concentration of 50 mg/L, suggesting that the most suitable N concentration for ECM fungal sporocarp formation can easily be estimated in vitro during mycelial growth. This finding may help determine the most suitable N conditions for increasing edible ECM fungus sporocarp production in natural forests.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00572-022-01085-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!