White matter lesions (WMLs) are common in older adults and represent an important predictor of negative long-term outcomes. Rest-activity rhythm disturbance is also common, however, few studies have investigated associations between these factors. We employed a novel AI-based automatic WML segmentation tool and diffusion-weighted tractography to investigate associations between tract specific WML volumes and non-parametric actigraphy measures in older adults at risk for cognitive decline. The primary non-parametric measures of interest were inter-daily stability (IS), intra-daily variability and relative amplitude, with the anterior thalamic radiation (ATR), superior longitudinal fasciculus (SLF) and inferior longitudinal fasciculus (ILF) selected as tracts of interest. One hundred and eight participants at risk for cognitive decline (classified as experiencing subjective or objective cognitive decline) were included (mean age = 68.85 years, SD = 8.91). Of the primary non-parametric measures of interest, results showed that lower IS was associated with a greater likelihood of higher WML burden in the ATR (OR = 1.82, 95% CI [1.12,3.15]). Analysis of secondary non-parametric measures revealed later onset of the least active period to be associated with greater likelihood of high WML burden in the SLF (OR = 1.55, 95% CI [1.00,2.53]) and increased activity during the least active 5-h period to be associated with a greater likelihood of high whole-brain WML burden (OR = 1.83, 95% CI [1.06,3.47]). This study shows integrity of the ATR and SLF, and overall WML burden is linked to altered rest-activity rhythms in older adults at risk for cognitive decline, with those demonstrating altered rest-activity rhythms showing 50%-80% higher odds of having high WML burden.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9708592 | PMC |
http://dx.doi.org/10.1038/s41380-022-01641-4 | DOI Listing |
Geroscience
January 2025
National Institute On Aging, Bethesda, MD, USA.
Photobiomodulation (PBM) therapy, a non-thermal light therapy using nonionizing light sources, has shown therapeutic potential across diverse biological processes, including aging and age-associated diseases. In 2023, scientists from the National Institute on Aging (NIA) Intramural and Extramural programs convened a workshop on the topic of PBM to discuss various proposed mechanisms of PBM action, including the stimulation of mitochondrial cytochrome C oxidase, modulation of cell membrane transporters and receptors, and the activation of transforming growth factor-β1. They also reviewed potential therapeutic applications of PBM across a range of conditions, including cardiovascular disease, retinal disease, Parkinson's disease, and cognitive impairment.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.
View Article and Find Full Text PDFClin Neuropsychol
January 2025
Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
Despite significant progress in understanding the factors influencing cognitive function in Parkinson's disease (PD), there is a notable gap in data representation for the Latinx population. This study aims to evaluate the contributors to and disparities in cognitive performance among Latinx patients with PD. A retrospective analysis was conducted based on cross-sectional data encompassing demographic, environmental, motor, and non-motor disease characteristics from the Latin American Research Consortium on the Genetics of PD (LARGE-PD) and the Parkinson's Progression Markers Initiative (PPMI) cohorts.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093-0948, USA.
Background: Effective detection of cognitive impairment in the primary care setting is limited by lack of time and specialized expertise to conduct detailed objective cognitive testing and few well-validated cognitive screening instruments that can be administered and evaluated quickly without expert supervision. We therefore developed a model cognitive screening program to provide relatively brief, objective assessment of a geriatric patient's memory and other cognitive abilities in cases where the primary care physician suspects but is unsure of the presence of a deficit.
Methods: Referred patients were tested during a 40-min session by a psychometrist or trained nurse in the clinic on a brief battery of neuropsychological tests that assessed multiple cognitive domains.
Nat Med
January 2025
Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease with the age at which characteristic symptoms manifest strongly influenced by inherited HTT CAG length. Somatic CAG expansion occurs throughout life and understanding the impact of somatic expansion on neurodegeneration is key to developing therapeutic targets. In 57 HD gene expanded (HDGE) individuals, ~23 years before their predicted clinical motor diagnosis, no significant decline in clinical, cognitive or neuropsychiatric function was observed over 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!