Hypoxic-ischemic injury has been linked with increased risk for developing Alzheimer's disease (AD). The underlying mechanism of this association is poorly understood. Here, we report distinct roles for hypoxia-inducible factor-1α (Hif-1α) in the regulation of BACE1 and γ-secretase activity, two proteases involved in the production of amyloid-beta (Aβ). We have demonstrated that Hif-1α upregulates both BACE1 and γ-secretase activity for Aβ production in brain hypoxia-induced either by cerebral hypoperfusion or breathing 10% O. Hif-1α binds to γ-secretase, which elevates the amount of active γ-secretase complex without affecting the level of individual subunits in hypoxic-ischemic mouse brains. Additionally, the expression of full length Hif-1α increases BACE1 and γ-secretase activity in primary neuronal culture, whereas a transcriptionally incompetent Hif-1α variant only activates γ-secretase. These findings indicate that Hif-1α transcriptionally upregulates BACE1 and nontranscriptionally activates γ-secretase for Aβ production in hypoxic-ischemic conditions. Consequently, Hif-1α-mediated Aβ production may be an adaptive response to hypoxic-ischemic injury, subsequently leading to increased risk for AD. Preventing the interaction of Hif-1α with γ-secretase may therefore be a promising therapeutic strategy for AD treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9722522PMC
http://dx.doi.org/10.1038/s41380-022-01676-7DOI Listing

Publication Analysis

Top Keywords

aβ production
16
activates γ-secretase
12
bace1 γ-secretase
12
γ-secretase activity
12
γ-secretase
9
γ-secretase aβ
8
cerebral hypoperfusion
8
hypoxic-ischemic injury
8
increased risk
8
upregulates bace1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!