Rhodium-Catalyzed Asymmetric Hydrogenation of All-Carbon Aromatic Rings.

Angew Chem Int Ed Engl

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.

Published: August 2022

Compared with heteroarenes, homogeneous asymmetric hydrogenation of all-carbon aromatic rings is a longstanding challenge in organic synthesis due to the strong aromaticity and difficult enantioselective control. Herein, we report the rhodium/diphosphine-catalyzed asymmetric hydrogenation of all-carbon aromatic rings, affording a series of axially chiral cyclic compounds with high enantioselectivity through desymmetrization or kinetic resolution. In addition, the central-chiral cyclic compounds were also obtained by asymmetric hydrogenation of phenanthrenes bearing a directing group. The key to success is the introduction of chiral diphosphine ligands with steric hindrance and strong electron-donating properties. The axially chiral monophosphine ligands could be obtained by simple conversion of the hydrogenation products bearing the phosphine atom.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202205623DOI Listing

Publication Analysis

Top Keywords

asymmetric hydrogenation
16
hydrogenation all-carbon
12
all-carbon aromatic
12
aromatic rings
12
axially chiral
8
cyclic compounds
8
hydrogenation
5
rhodium-catalyzed asymmetric
4
rings compared
4
compared heteroarenes
4

Similar Publications

Borohydrides, known for ultrahigh hydrogen density, are promising hydrogen storage materials but typically require high operating temperatures due to their strong thermodynamic stability. Here we introduce a novel light-induced destabilization mechanism for hydrogen storage reaction of borohydrides under ambient conditions photogenerated vacancies in LiH. These vacancies thermodynamically destabilize B-H bonds through the spontaneous "strong adsorption" of BH groups, which trigger an asymmetric redistribution of electrons, enabling hydrogen release at near room temperature, approximately 300 °C lower than the corresponding thermal process.

View Article and Find Full Text PDF

Enantioselective Synthesis of Nonfused Eight-Membered O-Heterocycles by Sequential Catalysis.

Org Lett

January 2025

Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.

This work describes a chiral bifunctional squaramide/DBU sequential catalytic strategy for the enantioselective synthesis of nonfused chiral eight-membered O-heterocycles through the asymmetric addition of ynones to β,γ-unsaturated α-ketoesters followed by the regio- and diastereoselective cyclization of the adduct intermediates. Mechanistic experiments revealed that an isomerization process should be involved in the ring formation step, and the origin of the high regioselectivity and diastereoselectivity has also been elucidated by the DFT calculations.

View Article and Find Full Text PDF

Asymmetric Synthesis of Azahelicenes via CPA-Catalyzed Kinetic Resolution.

Org Lett

January 2025

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.

The azahelicenes are structurally fascinating and practically useful chiral scaffolds, but their synthesis, especially in a catalytically asymmetric manner, is rather challenging. Herein, we report a CPA-catalyzed transfer hydrogenation process, which enables a rapid kinetic resolution of aza[6]helicenes. The established strategy provides facile access to enantioenriched aza[6]helicenes and tetrahydro[6]helicenes from easily available starting materials.

View Article and Find Full Text PDF

Hypohalites are commonly generated in biological systems, mostly with functions related to defense and immune system response. These hypohalites can bind to metal centers and are known for their strong oxidizing properties that play crucial roles in various biological processes. Herein, we report the synthesis, characterization and reactivity of novel biomimetic Ru(III)-hypochlorite complexes and focus the work on the electronic effects associated with the incorporation of methyl groups in a pentadentate ligand framework in an asymmetric fashion.

View Article and Find Full Text PDF

Asymmetric gem-Hydroboration and gem-Hydrogenation of Ynamides: A New Gateway to Chiral Fischer Carbene Complexes and their Catalytic Transformations.

Angew Chem Int Ed Engl

January 2025

Max-Planck-Institut fur Kohlenforschung, Organometallic Chemistry, Kaiser-Wilhelm-Platz 1, 45470, Mülheim/Ruhr, GERMANY.

Ynamides, when reacted with H2 or HBpin in the presence of [Cp*RuCl]4, convert into chiral-at-metal Fischer carbenes by regioselective gem-hydrogenation or gem-hydroboration of the polarized triple bond, respectively. gem-Hydroboration concomitantly affords a carbogenic borylated stereocenter adjacent to the ruthenium carbene unit, the configuration of which can be controlled using an Evans auxiliary. These are the first examples of asymmetric gem-addition reactions to alkynes known in the literature; representative pianostool ruthenium carbene complexes formed by this unconventional route were characterized by crystallographic and spectroscopic means.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!