High-throughput imaging of mRNA at the single-cell level in human primary immune cells.

RNA

Functional Immunogenomics Section, Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.

Published: September 2022

AI Article Synopsis

  • Single-cell measurement techniques have enhanced our understanding of gene expression variability in healthy and diseased states, revealing significant differences in individual cell transcription and responses to changes.
  • The new method called hcHCR integrates hybridization chain reaction for RNA visualization with high-content imaging to measure changes in gene expression in human immune cells effectively.
  • The system allows for easy detection of gene expression changes in thousands of cells simultaneously, enables multiplexing to assess multiple transcripts, and is adaptable for use in patient-derived cells for research and testing.

Article Abstract

Measurement of gene expression at the single-cell level has advanced the study of transcriptional regulation programs in healthy and disease states. In particular, single-cell approaches have shed light on the high level of transcriptional heterogeneity of individual cells, both at baseline and in response to experimental or environmental perturbations. We have developed a method for high-content imaging (HCI)-based quantification of relative changes in transcript abundance at the single-cell level in human primary immune cells and have validated its performance under multiple experimental conditions to demonstrate its general applicability. This method, named hcHCR, combines the sensitivity of the hybridization chain reaction (HCR) for the visualization of RNA in single cells, with the speed, scalability, and reproducibility of HCI. We first tested eight cell attachment substrates for short-term culture of primary human B cells, T cells, monocytes, or neutrophils. We then miniaturized HCR in 384-well format and documented the ability of the method to detect changes in transcript abundance at the single-cell level in thousands of cells for each experimental condition by HCI. Furthermore, we demonstrated the feasibility of multiplexing gene expression measurements by simultaneously assaying the abundance of three transcripts per cell at baseline and in response to an experimental stimulus. Finally, we tested the robustness of the assay to technical and biological variation. We anticipate that hcHCR will be suitable for low- to medium-throughput chemical or functional genomics screens in primary human cells, with the possibility of performing screens on cells obtained from patients with a specific disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9380748PMC
http://dx.doi.org/10.1261/rna.079239.122DOI Listing

Publication Analysis

Top Keywords

single-cell level
16
cells
9
level human
8
human primary
8
primary immune
8
immune cells
8
gene expression
8
baseline response
8
response experimental
8
changes transcript
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!