Circumventing immune resistance and boosting immune response is the ultimate goal of cancer immunotherapy. Herein, we reported a tumor-associated macrophage (TAM) membrane-camouflaged nanodecoy containing a self-amplifying reactive oxygen species (ROS)-sensitive prodrug nanoparticle for specifically inducing immunogenic cell death (ICD) in combination with TAM depletion. A versatile ROS-cleavable camptothecin (CPT) prodrug (DCC) was synthesized through a thioacetal linker between CPT and the ROS generator cinnamaldehyde (CA), which could self-assemble into a uniform prodrug nanoparticle to realize a positive feedback loop of "ROS-triggered CA/CPT release and CA/CPT-mediated ROS generation." This DCC was further modified with the TAM membrane (abbreviated as DCC@M2), which could not only target both primary tumors and lung metastasis nodules through VCAM-1/αβ integrin interaction but also absorb CSF-1 secreted by tumor cells to disturb the interaction between TAMs and cancer cells. Our nanodecoy could effectively induce ICD cascade and deplete TAMs for priming tumor-specific effector T cell infiltration for antitumor immune response activation, which represents a versatile approach for cancer immunotherapy. STATEMENT OF SIGNIFICANCE: A tumor-associated macrophage (TAM) membrane-camouflaged nanodecoy containing a self-amplifying reactive oxygen species (ROS)-sensitive prodrug nanoparticle was fabricated for the first time. This ROS-cleavable camptothecin (CPT)/cinnamaldehyde (CA) prodrug (DCC) could self-assemble into a uniform nanoparticle to realize the positive feedback loop of "ROS-triggered CA/CPT release and CA/CPT-mediated ROS generation." After TAM membrane coating, this system (DCC@M2) could not only target both primary tumors and lung metastatic nodules but also scavenge CSF-1 secreted by tumor cells for TAM depletion for sufficient chemotherapy-sensitized immunotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2022.06.035 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!