Effects of neuronal cell adhesion molecule L1 and nanoparticle surface modification on microglia.

Acta Biomater

Neural Tissue/Electrode Interface and Neural Tissue Engineering lab, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, United States; McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, United States; Center for Neural Basis of Cognition, Pittsburgh, PA 15213, United States. Electronic address:

Published: September 2022

Microelectrode arrays for neural recording suffer from low yield and stability partly due to the inflammatory host responses. A neuronal cell adhesion molecule L1 coating has been shown to promote electrode-neuron integration, reduce microglia activation and improve recording. Coupling L1 to surface via a nanoparticle (NP) base layer further increased the protein surface density and stability. However, the exact L1-microglia interaction in these coatings has not been studied. Here we cultured primary microglia on L1 modified surfaces (with and without NP) and characterized microglia activation upon phorbol myristate acetate (PMA) and lipopolysaccharide (LPS) stimulation. Results showed L1 coatings reduced microglia's superoxide production in response to PMA and presented intrinsic antioxidant properties. Meanwhile, L1 decreased iNOS, NO, and pro-inflammatory cytokines (TNF alpha, IL-6, IL-1 beta), while increased anti-inflammatory cytokines (TGF beta 1, IL-10) in LPS stimulated microglia. Furthermore, L1 increased Arg-1 expression and phagocytosis upon LPS stimulation. Rougher NP surface showed lower number of microglia attached per area than their smooth counterpart, lower IL-6 release and superoxide production, and higher intrinsic reducing potential. Finally, we examined the effect of L1 and nanoparticle modifications on microglia response in vivo over 8 weeks with 2-photon imaging. Microglial coverage on the implant surface was found to be lower on the L1 modified substrates relative to unmodified, consistent with the in vitro observation. Our results indicate L1 significantly reduces superoxide production and inflammatory response of microglia and promotes wound healing, while L1 immobilization via a nanoparticle base layer brings added benefit without adverse effects. STATEMENT OF SIGNIFICANCE: Surface modification of microelectrode arrays with L1 has been shown to reduce microglia coverage on neural probe surface in vivo and improves neural recording, but the specific mechanism of action is not fully understood. The results in this study show that surface bound L1 reduces superoxide production from cultured microglia via direct reduction reaction and signaling pathways, increases anti-inflammatory cytokine release and phagocytosis in response to PMA or LPS stimulation. Additionally, roughening the surface with nanoparticles prior to L1 immobilization further increased the benefit of L1 in reducing microglia activation and oxidative stress. Together, our findings shed light on the mechanisms of action of nanotextured and neuroadhesive neural implant coatings and guide future development of seamless tissue interface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018678PMC
http://dx.doi.org/10.1016/j.actbio.2022.06.038DOI Listing

Publication Analysis

Top Keywords

superoxide production
16
microglia activation
12
lps stimulation
12
microglia
11
surface
9
neuronal cell
8
cell adhesion
8
adhesion molecule
8
surface modification
8
microelectrode arrays
8

Similar Publications

The present study was conducted to evaluate the efficacy of extract against the white spot syndrome virus (WSSV) in black tiger shrimp () following oral administration . The methanol extract derived from the extraction was sprayed into feed at a concentration of 0.0 %, 0.

View Article and Find Full Text PDF

Objectives: To investigate the natural product sulforaphane (SFN) in protection of membranous nephropathy (MN) by inhibiting oxidative stress-associated podocyte pyroptosis.

Materials And Methods: A passive Heymann nephritis (PHN) model was established and treated with SFN. Clinical manifestations were examined by testing 24-hr urine protein, albumin, total cholesterol, triglyceride, high-density and low-density lipoprotein levels.

View Article and Find Full Text PDF

Low-voltage electrostatic field (LP) enhances the freezing quality of food by increasing water supercooling and improving ice crystal morphology. This study explored the effects of LP treatment on the storage quality of square bamboo shoots using physicochemical, gas chromatography-mass spectrometry, and metabolomics methods. Results showed that with prolonged storage, the LP-treated group had lower activities of peroxidase, phenylalanine ammonia-lyase, and lower levels of malondialdehyde, cellulose, and lignin compared to the control group, while superoxide dismutase and catalase activities and shear force values were higher.

View Article and Find Full Text PDF

Observing quantum mechanical characteristics in biological processes is a surprising and important discovery. One example, which is gaining more experimental evidence and practical applications, is the effect of weak magnetic fields with extremely low frequencies on cells, especially cancerous ones. In this study, we use a mathematical model of ROS dynamics in cancer cells to show how ROS oscillatory patterns can act as a resonator to amplify the small effects of the magnetic fields on the radical pair dynamics in mitochondrial Complex III.

View Article and Find Full Text PDF

LC-MS/MS based analytical strategies for the detection of lipid peroxidation products in biological matrices.

J Pharm Biomed Anal

January 2025

Department of Bioscience and Technology for Food, Agriculture and Environmental, University of Teramo, Via Renato Balzarini 1, Teramo 64100, Italy. Electronic address:

Oxidative stress (OS) arises mainly from exposure to reactive oxygen species (ROS) such as superoxide anion, hydroxyl radical, and hydrogen peroxide. These molecules can cause significant damage to proteins, DNA, and lipids, leading to various diseases. Cells fight ROS with detoxifying enzymes; however, an imbalance can cause damage leading to ischemic conditions, heart disease progression, and neurological disorders such as Alzheimer's disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!