Spatial trends of trace elements bioaccumulation in the most endangered dolphin from the Southwestern Atlantic Ocean: The franciscana (Pontoporia blainvillei).

Environ Pollut

Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil; Programa de Pós-Graduação Em Oceanografia, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil. Electronic address:

Published: September 2022

Trace elements bioaccumulation patterns can be an important tool to assess differences among cetaceans' populations. In this work, their use as potential chemical markers to differentiate franciscanas (Pontoporia blainvillei) populations was evaluated. Franciscanas were collected from three states in southeastern Brazil, which comprise three different Franciscana Management Areas (FMAs): Espírito Santo (FMA Ia), southern Rio de Janeiro (FMA IIa), and central São Paulo (FMA IIb). The concentrations of As, Cd, Cu, Fe, Hg, Mn and Zn were determined in the muscle, liver and kidney of the animals. Cadmium was the most valuable chemical marker to differentiate stocks, separating at least FMA IIa from the others. The higher Cd levels in FMA IIa, along with dietary information, indicate that the predominant consumption of cephalopods by this population is the main reason for the differences found. Additionally, environmental characteristics of the areas should also be considered as divergent sources of trace elements. Our findings suggest that non-essential trace elements, such as Cd, can be successful markers to differentiate populations. The Mn concentrations in FMA Ia raised concern and must be carefully monitored, as well as other elements that compose the iron ore tailings that have impacted the Espírito Santo coastal area. Additionally, this is the first study to report trace element concentration in the franciscanas from FMA IIa (southern Rio de Janeiro). Trace element concentrations found in franciscanas may represent different contamination levels in their preys and environments, which might pose specific threats to distinct populations. Therefore, our findings are important to characterize and differentiate franciscana populations and to guide precise management and conservation actions for the distinct stocks of this endangered species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2022.119655DOI Listing

Publication Analysis

Top Keywords

trace elements
16
fma iia
16
elements bioaccumulation
8
pontoporia blainvillei
8
markers differentiate
8
espírito santo
8
southern rio
8
rio janeiro
8
trace element
8
fma
7

Similar Publications

The mechanisms that regulate minor and trace element biomineralization in the echinoid skeleton can be primarily controlled biologically (, by the organism and its vital effects) or by extrinsic environmental factors. Assessing the relative role of those controls is essential for understanding echinoid biomineralization, taphonomy, diagenesis, and their potential as geochemical archives. In this study, we (1) contrast geochemical signatures of specimens collected across multiple taxa and environmental settings to assess the effects of environmental and physiological factors on skeletal biomineralogy; and (2) analyze the nanomechanical properties of the echinoid skeleton to assess potential linkages between magnesium/calcium (Mg/Ca) ratios and skeletal nanohardness.

View Article and Find Full Text PDF

Background: The small intestine harbors a rich array of intestinal intraepithelial lymphocytes (IELs) that interact with structural cells to collectively sustain gut immune homeostasis. Dysregulation of gut immune homeostasis was implicated in the pathogenesis of multiple autoimmune diseases, however, whether this homeostasis is disrupted in a lupus autoimmune background remains unclear.

Methods: We performed single-cell RNA sequencing (scRNA-seq) analyses to elucidate immune and structural milieu in the intestinal epithelium of MRL/Lpr lupus mice (Lpr mice) and MRL/Mpj control mice (Mpj mice).

View Article and Find Full Text PDF

Polyoxometalate-based injectable coacervate inhibits HCC metastasis after incomplete radiofrequency ablation via scavenging ROS.

J Nanobiotechnology

January 2025

Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.

Background: Incomplete radiofrequency ablation (iRFA) stimulates residual hepatocellular carcinoma (HCC) metastasis, leading to a poor prognosis for patients. Therefore, it is imperative to develop an effective therapeutic strategy to prevent iRFA-induced HCC metastasis.

Results: Our study revealed that iRFA induced an abnormal increase in ROS levels within residual HCC, which enhanced tumor cell invasiveness and promoted macrophage M2 polarization, ultimately facilitating HCC metastasis.

View Article and Find Full Text PDF

Selenium is a beneficial element in agriculture, particularly for its potential to improve plant growth and stress tolerance at suitable concentrations. In this study, Phaseolus vulgaris was foliar-sprayed with selenium selenate (Se) or selenium nanoparticles (SeNP) at different concentrations during the vegetative stage; afterward, the seed yield was analyzed for metabolomics using H, J-resolved and HSQC NMR data, and NMR databases. A total of 47 metabolites were identified with sugars being the major chemical class.

View Article and Find Full Text PDF

In present study, 15 morphologically different fungi isolated from rhizopheric soils of an industrial area were screened for their Zn removal efficiency from aqueous solution. Isolate depicting highest potential was molecularly identified as Aspergillus terreus SJP02. Effect of various process parameters viz.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!