Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We often remember the consequences of past choices to adapt to changing circumstances. Recalling past events requires the hippocampus (HPC), and using stimuli to anticipate outcome values requires the orbitofrontal cortex (OFC). Spatial reversal tasks require both structures to navigate newly rewarded paths. Both HPC place and OFC value cells fire in phase with theta (4-12 Hz) oscillations. Both structures are described as cognitive maps: HPC maps space and OFC maps task states. These similarities imply that OFC-HPC interactions are crucial for using memory to predict outcomes when circumstances change, but the mechanisms remain largely unknown. To investigate possible interactions, we simultaneously recorded ensembles in OFC and CA1 as rats learned spatial reversals in a plus maze. Striking interactions occurred only while rats learned their first reversal: CA1 population vectors predicted changes in OFC activity but not vice versa, OFC spikes phase locked to hippocampal theta oscillations, mixed pairs of CA1 and OFC neurons fired together within single theta cycles, and CA1 led OFC spikes by ∼30 ms. After the new contingency became familiar, CA1 ensembles stably represented distinct spatial paths, whereas OFC ensembles developed more generalized goal arm representations in different paths to identical rewards. These frontotemporal interactions, engaged selectively when new task features inform decision-making, suggest a mechanism for linking novel episodes with expected outcomes, when HPC signals trigger "cognitive remapping" by OFC..
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11073633 | PMC |
http://dx.doi.org/10.1016/j.cub.2022.06.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!