Variations of tunnelling resistance between CNTs with strain in composites: non-monotonicty and influencing factors.

Nanotechnology

National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou 450002, People's Republic of China.

Published: July 2022

The electro-mechanical response of conductive carbon-nanotube(CNT)-polymer composites is vital when they are used as smart-sensing materials. Clarifying the variation trend of resistance with strain is the key to design and regulate the piezoresistive property of such material. Here, we present some finite element simulations to predict the electro-mechanical response using a geometrical model comprising two hollow cylindrical CNTs and a cuboid matrix. The electrical contact between CNTs is represented by some elements which account for quantum tunnelling effects and capture the sensitivity of conductivity to separation. Different from classical simulations using solid model or one-dimensional beam model, in which the tunnelling resistance between two CNTs changes monotonously with strain, the results in this work show that the trend is non-monotonic in some cases, i.e. it increases at first and then decreases with the uniaxial compressive strain when the elastic modulus of the matrix is high. In addition, factors affecting the different variation trends are discussed in details, which include geometric model, elastic modulus and Poisson's ratio of the matrix, and orientation angle.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ac7c7cDOI Listing

Publication Analysis

Top Keywords

tunnelling resistance
8
resistance cnts
8
electro-mechanical response
8
elastic modulus
8
variations tunnelling
4
cnts
4
strain
4
cnts strain
4
strain composites
4
composites non-monotonicty
4

Similar Publications

Truncated hemoglobins (TrHbs) have an ancient origin and are widely distributed in microorganisms where they often serve roles other than dioxygen transport and storage. In extremophiles, these small heme proteins must have features that secure function under challenging conditions: at minimum, they must be folded, retain the heme group, allow substrates to access the heme cavity, and maintain their quaternary structure if present and essential. The genome of the obligate psychropiezophile Shewanella benthica strain KT99 harbors a gene for a TrHb belonging to a little-studied clade of globins (subgroup 2 of group N).

View Article and Find Full Text PDF

Interface Engineering and Modulation of Nickel Oxide for High Air-Stable p-Type Crystalline Silicon Solar Cells.

Small

January 2025

Anhui Soltrend New Energy Technology Co., Ltd, Lujiang County, Hefei, 230000, China.

Dopant-free passivating contact crystalline silicon solar cells hold the potential of higher efficiency and cost down. In the hole-transport terminal, one still faces the challenge of trade-off between efficiency and stability. In this work, a H-AlO/NiO/Ni stacked hole-transport layer is proposed, where the H-AlO standing for H-rich AlO film can effectively reduce the interfacial defects and the high work function Ni metal results in a low contact resistance of 47.

View Article and Find Full Text PDF

Ultralow Power Cold-Fuse Memory Based on Metal-Oxide-CNT Structure.

Nano Lett

January 2025

Key Lab for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China.

One-time programmable (OTP) memory is an essential component in chips, which has extremely high security to protect the stored critical information from being altered. However, traditional OTP memory based on the thermal breakdown of the dielectric has a large programming current, which leads to high power consumption. Here, we report a gate tunneling-induced "cold" breakdown phenomenon in carbon nanotube (CNT) field-effect transistors, and based on this we construct a "cold" fuse (C-fuse) memory where applying a mild gate voltage can break down the CNT channel without damaging the gate dielectric.

View Article and Find Full Text PDF

Van der Waals (vdW) contact has been widely regarded as one of the most potential strategies for exploiting low-resistance metal-semiconductor junctions (MSJs) based on atomically thin transition-metal dichalcogenides (TMDs), but this method is still not efficient due to weak metal-TMD interfacial interactions. Therefore, an understanding of interfacial interactions between metals and TMDs is essential for achieving low-resistance contacts with weak Fermi level pinning (FLP). Herein, we report how the interfacial interactions between metals and TMDs affect the electrical contacts by considering more than 90 MSJs consisting of a semiconducting TMD channel and different types of metal electrodes, including bulk metals, MXenes, and metallic TMDs.

View Article and Find Full Text PDF

Two-dimensional (2D) transition metal dichalcogenides (TMDs) have received significant interest for use in tunnel field-effect transistors (TFETs) due to their ultrathin layers and tunable band gap features. In this study, we used density functional theory (DFT) to investigate the electronic properties of six TMD heterostructures, namely, MoSe/HfS, MoTe/ZrS, MoTe/HfS, WSe/HfS, WTe/ZrS, and WTe/HfS, focusing on variations in band alignments. We demonstrate that WTe/ZrS and WTe/HfS have the smallest band gaps (close to 0 or broken) from the considered set.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!