A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and evaluation of design guidelines for cognitive ergonomics in human-robot collaborative assembly systems. | LitMetric

Development and evaluation of design guidelines for cognitive ergonomics in human-robot collaborative assembly systems.

Appl Ergon

Industrial Engineering and Automation (IEA), Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100, Bolzano, Italy. Electronic address:

Published: October 2022

Industry 4.0 is the concept used to summarize the ongoing fourth industrial revolution, which is profoundly changing the manufacturing systems and business models all over the world. Collaborative robotics is one of the most promising technologies of Industry 4.0. Human-robot interaction and human-robot collaboration will be crucial for enhancing the operator's work conditions and production performance. In this regard, this enabling technology opens new possibilities but also new challenges. There is no doubt that safety is of primary importance when humans and robots interact in industrial settings. Nevertheless, human factors and cognitive ergonomics (i.e. cognitive workload, usability, trust, acceptance, stress, frustration, perceived enjoyment) are crucial, even if they are often underestimated or ignored. Therefore, this work refers to cognitive ergonomics in the design of human-robot collaborative assembly systems. A set of design guidelines has been developed according to the analysis of the scientific literature. Their effectiveness has been evaluated through multiple experiments based on a laboratory case study where different participants interacted with a low-payload collaborative robotic system for the joint assembly of a manufacturing product. The main assumption to be tested is that it is possible to improve the operator's experience and efficiency by manipulating the system features and interaction patterns according to the proposed design guidelines. Results confirmed that participants improved their cognitive response to human-robot interaction as well as the assembly performance with the enhancement of workstation features and interaction conditions by implementing an increasing number of guidelines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apergo.2022.103807DOI Listing

Publication Analysis

Top Keywords

design guidelines
12
cognitive ergonomics
12
human-robot collaborative
8
collaborative assembly
8
assembly systems
8
human-robot interaction
8
features interaction
8
cognitive
5
human-robot
5
development evaluation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!