Around the world, disease surveillance and mathematical modeling have been vital tools for government responses to the COVID-19 pandemic. In the face of a volatile crisis, modeling efforts have had to evolve over time in proposing policies for pandemic interventions. In this paper, we document how mathematical modeling contributed to guiding the trajectory of pandemic policies in the Philippines. We present the mathematical specifications of the FASSSTER COVID-19 compartmental model at the core of the FASSSTER platform, the scenario-based disease modeling and analytics toolkit used in the Philippines. We trace how evolving epidemiological analysis at the national, regional, and provincial levels guided government actions; and conversely, how emergent policy questions prompted subsequent model development and analysis. At various stages of the pandemic, simulated outputs of the FASSSTER model strongly correlated with empirically observed case trajectories (r=94%-99%, p<.001). Model simulations were subsequently utilized to predict the outcomes of proposed interventions, including the calibration of community quarantine levels alongside improvements to healthcare system capacity. This study shows how the FASSSTER model enabled the implementation of a phased approach toward gradually expanding economic activity while limiting the spread of COVID-19. This work points to the importance of locally contextualized, flexible, and responsive mathematical modeling, as applied to pandemic intelligence and for data-driven policy-making in general.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9212903PMC
http://dx.doi.org/10.1016/j.epidem.2022.100599DOI Listing

Publication Analysis

Top Keywords

mathematical modeling
12
covid-19 pandemic
8
modeling
5
pandemic
5
policy-driven mathematical
4
modeling covid-19
4
pandemic response
4
response philippines
4
philippines disease
4
disease surveillance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!