Nanobiomaterials, or NBMs, have been used in medicine and bioimaging for decades, with wide-reaching applications ranging from their uses as carriers of genes and drugs, to acting as sensors and probes. When developing nanomedicine products, it is vitally important to evaluate their safety, ensuring that both biocompatibility and efficacy are achieved so their applications in these areas can be safe and effective. When discussing the safety of nanomedicine in general terms, it is foolish to make generalised statements due to the vast array of different manufactured nanomaterials, formulated from a multitude of different materials, in many shapes and sizes; therefore, NBM pre-clinical screening can be a significant challenge. Outside of their distribution in the various tissues, organs and cells in the body, a key area of interest is the impact of NBMs on the liver. A considerable issue for researchers today is accurately predicting human-specific liver toxicity prior to clinical trials, with hepatotoxicity not only the most cited reasons for withdrawal of approved drugs, but also a primary cause of attrition in pre-launched drug candidates. To date, no simple solution to adequately predict these adverse effects exists prior to entering human experimentation. The limitations of the current pre-clinical toolkit are believed to be one of the main reasons for this, with questions being raised on the relevance of animal models in pre-clinical assessment, and over the ability of conventional, simplified in vitro cell-based assays to adequately assess new drug candidates or NBMs. Common 2D cell cultures are unable to adequately represent the functions of 3D tissues and their complex cell-cell and cell-matrix interactions, as well as differences found in diffusion and transport conditions. Therefore, testing NBM toxicity in conventional 2D models may not be an accurate reflection of the actual toxicity these materials impart on the body. One such method of overcoming these issues is the use of 3D cultures, such as cell spheroids, to more accurately assess NBM-tissue interaction. In this study, we introduce a 3D hepatocellular carcinoma model cultured from HepG2 cells to assess both the cytotoxicity and viability observed following treatment with a variety of NBMs, namely a nanostructured lipid carrier (in the specific technical name = LipImage 815), a gold nanoparticle (AuNP) and a panel of polymeric (in the specific technical name = PACA) NBMs. This model is also in compliance with the 3Rs policy of reduction, refinement and replacement in animal experimentation [1], and meets the critical need for more advanced in vitro models for pre-clinical nanotoxicity assessment. Pipeline for the pre-clinical assessment of NBMs in liver spheroid model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9360078 | PMC |
http://dx.doi.org/10.1007/s13346-022-01170-1 | DOI Listing |
Database (Oxford)
January 2025
Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium.
The European Union's ban on animal testing for cosmetic products and their ingredients, combined with the lack of validated animal-free methods, poses challenges in evaluating their potential repeated-dose organ toxicity. To address this, innovative strategies like Next-Generation Risk Assessment (NGRA) are being explored, integrating historical animal data with new mechanistic insights from non-animal New Approach Methodologies (NAMs). This paper introduces the TOXIN knowledge graph (TOXIN KG), a tool designed to retrieve toxicological information on cosmetic ingredients, with a focus on liver-related data.
View Article and Find Full Text PDFPLoS One
January 2025
Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China.
Hepatocellular carcinoma(HCC) has a high mortality and morbidity rate and seriously jeopardizes human life. Chemicals and chemotherapeutic agents have been experiencing problems such as side effects and drug resistance in the treatment of HCC, which cannot meet the needs of clinical treatment. Therefore, finding novel low-toxicity and high-efficiency anti-hepatocellular carcinoma drugs and exploring their mechanisms of action have become the current problems to be solved in the treatment of HCC.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Center of Studies and Research Toxic-Pharmacological, School of Pharmacy, Federal University of Goias, Leste Universitario, 240th Street, Corner of 5th Avenue, Goiania, GO, 74605-170, Brazil.
The CCl-induced hepatotoxicity model is a traditional preclinical assay applied to evaluate potential hepatoprotective compounds. However, several studies have used it with inappropriate dose and exposure time, generating both weak response or irreversible liver injury, as well as lack of representative liver and plasma biomarkers. Therefore, this study aims to determine the best dose and exposure time of CCl in Wistar rats, permitting a proper evaluation of potential hepatoprotective effect.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
Ginsenoside Rd (Rd) is a bioactive compound predominantly found in Panax ginseng C.A. Meyer and Panax notoginseng (Burkill) F.
View Article and Find Full Text PDFJ Control Release
January 2025
Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Republic of Singapore. Electronic address:
mRNA-loaded lipid nanoparticles (mRNA-LNPs) hold great potential for disease treatment and prevention. LNPs are normally made from four lipids including ionizable lipid, helper lipid, cholesterol, and PEGylated lipid (PEG-lipid). Although PEG-lipid has the lowest content, it plays a crucial role in the effective delivery of mRNA-LNPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!